DEPARTMENT OF SCIENCE AND HUMANITIES

REGULATION 2021

I YEAR /I SEM

MA3151 MATRICES & CALCULUS

$$3_1 = 3_{\text{uni}}$$
 of the main diagonal elements = $11-2-b=3$
 $3_2 = 3_{\text{uni}}$ of the numbers of main diagonal elements
= $\begin{vmatrix} -2 & -5 \\ -4 & -b \end{vmatrix} + \begin{vmatrix} 11 & -7 \\ 10 & -6 \end{vmatrix} + \begin{vmatrix} 11 & -4 \\ 7 & -2 \end{vmatrix} = (12-20) + (-6b+70) + (-22+28)$

$$= -8 + 4 + 6 = 2$$

$$5_3 = |A| = 11(12 - 20) + 4(-42 + 50) - 7(-28 + 20) = 11(-8) + 4(8) - 7(-8)$$

$$\times 1 + 4$$

$$|\frac{32+5b=0}{\sqrt{2-3}}$$

$$|\frac{2}{\sqrt{3}}|$$

$$|\frac{3}{\sqrt{3}}|$$

Hence the eigenvalues are 0,1,2.

Figure of the regardents:
$$(A-\lambda 1) \times = 0$$

$$\begin{pmatrix}
11-\lambda & -4 & -7 \\
7 & -2-\lambda & -5 \\
10 & -4 & -b-\lambda
\end{pmatrix}
\begin{pmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{pmatrix} = 0$$

$$\frac{\lambda=0}{7} \begin{pmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$\frac{\chi_{1}}{20-14} = \frac{\chi_{2}}{-49+55} = \frac{\chi_{3}}{-22+28} \Rightarrow \frac{\chi_{1}}{6} = \frac{\chi_{2}}{6} \Rightarrow \frac{\chi_{1}}{1} = \frac{\chi_{2}}{1} = \frac{\chi_{3}}{1}$$

$$\frac{\lambda=1}{7} \begin{pmatrix} 10 & -4 & -7 \\ 7 & -3 & -5 \\ 10 & -4 & -7 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$\begin{aligned} &\log_{1}-\mu x_{2}-7w_{3}=0 \\ &7x_{1}-3x_{2}-5x_{3}=0 \\ &\log_{1}-\lambda x_{2}-7x_{3}=0 \end{aligned} \qquad \qquad \begin{aligned} &x_{1} & x_{2} & x_{3} \\ &-\lambda & -7 & 10 & -\lambda y \\ &-3 & -5 & 7 & -3 \end{aligned}$$

$$\begin{vmatrix} x_{1} & x_{2} & x_{3} & x_{3} \\ &-\lambda & -7 & -3 & -5 \end{vmatrix} = \frac{x_{3}}{2} \\ & & & & & & & & & & & & \\ &x_{1} & -2 & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

Scanned by CamScanner

Eigenvectors:
$$(A-\lambda 1) \times = 0$$

$$\begin{pmatrix} -2-\lambda & 2 & -3 \\ 2 & 1-\lambda & -6 \\ -1 & -2 & -\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$\frac{x=-3}{2} \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Put
$$x_1=0 \Rightarrow 2x_2-3x_3=0 \Rightarrow 2x_2=3x_3 \Rightarrow \frac{x_2}{3}=\frac{x_3}{2}$$

$$\therefore \times_1 = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$$

Put
$$x_2 = 0 \rightarrow x_1 - 3x_3 = 0 \Rightarrow x_1 = 3x_3 \Rightarrow \frac{x_1}{3} = \frac{x_3}{1}$$

$$\therefore \times_2 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

$$\frac{\lambda = 5}{2} \begin{pmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0$$

$$\frac{\chi_1}{20-12} = \frac{\chi_2}{6+10} = \frac{\chi_3}{-4-4} \Rightarrow \frac{\chi_1}{8} = \frac{\chi_2}{16} = \frac{\chi_3}{-8} \Rightarrow \frac{\chi_1}{81} = \frac{\chi_2}{2} = \frac{\chi_3}{-1}$$

$$\therefore \times_3 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

3 Find the eigenvalues & eigenvectors of the matrix
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 [M/D-2015] $\frac{50!}{10!}$ Let $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

$$\begin{aligned} &= \begin{pmatrix} 2 & o & | + | & 2 & 1 \\ 0 & z & | + | & 2 & 1 \\ 1 & 2 & | + | & 2 & 0 \\ 0 & z & | + | & 2 & 1 \\ 1 & 2 & | + | & 2 & 0 \\ 0 & 2 & | + | & 2 & 1 \\ 1 & 2 & | & 2 & 2 \\ 2 & | & 2 & | & 2 \\ 2 & | & 2 & 2 \\ 2 &$$

$$\frac{x_1}{o+1} = \frac{x_2}{o-o} = \frac{x_3}{1-o} \Rightarrow \frac{x_1}{1} = \frac{x_2}{o} = \frac{x_3}{1}$$

$$\therefore x_3 = \begin{pmatrix} 1 \\ o \\ 1 \end{pmatrix}$$

Find the eigenvalues & eigenvectors of the matrix
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

$$\frac{30!}{2} \text{ Let } A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

$$\frac{[A/M-2017]}{[N/D-2017]}$$

Characteristic equation: >3-5, x2+5, x-53=0

5,= Sum of the main diagonal elements = 6+3+3=12

S2 = Sum of the minors of main diagonal elements

$$= \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 6 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 6 & -2 \\ -2 & 3 \end{vmatrix} = (9-1) + (18-4) + (18-4)$$

$$= 8 + 14 + 14 = 36$$

$$5_3 = |A| = 6(9 - 1) + 2(-6 + 2) + 2(2 - 6) = 6(8) + 2(-4) + 2(-4)$$

$$= 48 - 8 - 8 = 32$$

Hence the characteristic egn/. is \3-12\2+36\-32=0

$$(\lambda-8)(\lambda-2)=0 \Rightarrow \lambda=8,2$$

Hence the eigenvalues are 2,2,8.

Eigenvectors: (A-XI)x=0

Envectors:
$$(A-\lambda 2)\lambda = 0$$

$$\begin{pmatrix}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{pmatrix}
\begin{pmatrix}
\chi_1 \\
\chi_2 \\
\chi_3
\end{pmatrix} = 0$$

$$\frac{\lambda=2}{2} \begin{pmatrix} 4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \begin{aligned} 4\chi_1 - 2\chi_2 + 2\chi_3 &= 0 \\ -2\chi_1 + \chi_2 - \chi_3 &= 0 \\ 2\chi_1 - \chi_2 + \chi_3 &= 0 \end{aligned} \Rightarrow 2\chi_1 - \chi_2 + \chi_3 = 0$$

Put
$$x_{1}=0 \Rightarrow -x_{2}+x_{3}=0 \Rightarrow x_{2}=x_{3} \Rightarrow \frac{x_{2}}{1}=\frac{x_{3}}{1}$$

$$\therefore x_{1}=\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\frac{\lambda \cdot t}{2 - 1} = \frac{2}{5} \cdot \frac{1}{5} \left(\frac{x_{1}}{x_{3}} \right) = 0 \qquad \frac{2x_{1} - 3x_{3} + 2x_{3} = 0}{2x_{1} - 3x_{2} - 3x_{3} = 0} = \frac{2}{5} \cdot \frac{1}{5} - \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{5} = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{5} = \frac{2}{5$$

Hence the eigenvalues are 1,2,3.

Eigenrectors: (A-X2)X=0

$$\begin{pmatrix} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

$$\frac{\lambda_{=1}}{1} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Put
$$x_1=0 \Rightarrow 2x_2+x_3=0 \Rightarrow 2x_2=-x_3 \Rightarrow \frac{x_2}{-1}=\frac{x_3}{2}$$

$$\therefore x_1=\begin{pmatrix} 0\\-1\\2 \end{pmatrix}$$

$$\frac{\lambda=2}{1} = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \chi_1 + \chi_2 + \chi_3 = 0 \qquad \qquad 1 \qquad 1 \qquad 1$$

$$\frac{x_1}{2-1} = \frac{x_2}{1-0} = \frac{x_3}{0-2} \Rightarrow \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{-2}$$

$$\frac{x_1}{2-0} = \frac{x_2}{1+1} = \frac{x_3}{0-2} \implies \frac{x_1}{2} = \frac{x_2}{2} = \frac{x_3}{-2} \implies \frac{x_1}{1} = \frac{x_2}{1} = \frac{x_3}{-1}$$

$$\therefore x_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Couley - Hamilton theorem:

Every square matrix satisfies its own characteristic equation. Uses of Cayley-Hamilton theorem:

To calculate (i) the positive integral powers of A&

(ii) the inverse of a non-singular square matrix A.

(b) Verify Cayley-Hamilton thm/ for the matrix
$$A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
. Hence using it find $A^{-1} = A^{-1}$. [N/D-2014] [A/M-2017] [M/J-2013] [M/J-2010]

Sol: Griven $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

Characteristic equation: x3-5, x2+52x-53=0 3,= Sum of the main diagonal elements = 2+2+2=6 32 = Sum of the ninors of main diagonal elements $= \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = (4-1) + (4-2) + (4-1) = 3+2+3=8$ 3 = |A| = 2(4-1)+1(-2+1)+2(1-2) = 2(3)+1(-1)+2(-1) = b-1-2=3Hence the characteristic egn). is >3-6>2+8>-3=0. By Cayley-Hamilton thuy, every square matrix satisfies its own characteristic equation. -. A3-6A2+8A-31=0 -1 Verification: $A^{2} = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -b & 9 \\ -b & b & -b \\ 5 & -b & 7 \end{pmatrix}$ $A^{3} = \begin{pmatrix} 7 & -b & 9 \\ -b & b & -b \\ b & b & 7 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 00 & 29 & 29 \end{pmatrix}$ $A^{3}-6A^{2}+8A-3\hat{1}=\begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{pmatrix} -6\begin{pmatrix} 7 & -6 & 9 \\ -7 & 6 & -6 \\ 5 & -5 & 7 \end{pmatrix} +8\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} -3\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{pmatrix} - \begin{pmatrix} 42 & -36 & 54 \\ -30 & 36 & -36 \\ 30 & -30 & 42 \end{pmatrix} + \begin{pmatrix} 16 & -8 & 16 \\ -8 & 16 & -8 \\ 8 & -8 & 16 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ Hence Cayley-Hamilton Hump. verified. (1) => A3-6A2+8A-32=0 => A2-6A+82-3A-1=0 => 3A-1=A2-6A+82 .. A-1= 1 (A2-6A+81) $A^{2}-6A+8\hat{J}=\begin{pmatrix} 7 & -6 & 9 \\ -6 & 6 & -6 \\ -6 & 6 & 7 \end{pmatrix}-6\begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}+8\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 7 & -b & 9 \\ -5 & b & -b \\ 5 & -5 & 7 \end{pmatrix} - \begin{pmatrix} 12 & -b & 12 \\ -b & 12 & -b \\ 6 & -b & 12 \end{pmatrix} + \begin{pmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{pmatrix} = \begin{pmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}$ $A^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ y_3 & \frac{2}{3} & 0 \\ -y_4 & y_3 & 1 \end{pmatrix}$

$$\begin{array}{l}
\text{(T)} = A^{3} - 6A^{2} + 8A - 3\hat{2} = 0 \Rightarrow A^{4} - 6A^{5} + 8A^{2} - 3A = 0 \Rightarrow A^{4} = 6A^{3} - 8A^{2} + 3A \\
A^{4} = 6 \begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 21 & -22 & 29 \end{pmatrix} - 8 \begin{pmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{pmatrix} + 3 \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \\
&= \begin{pmatrix} 174 & -168 & 228 \\ -132 & 138 & -168 \\ 132 & -132 & 174 \end{pmatrix} - \begin{pmatrix} 56 & -48 & 72 \\ -40 & 48 & -48 \\ 40 & -40 & 56 \end{pmatrix} + \begin{pmatrix} 6 & -3 & 6 \\ -3 & 6 & -3 \\ 3 & -3 & 6 \end{pmatrix} = \begin{pmatrix} 124 & -123 & 162 \\ -95 & 96 & -123 \\ 95 & -95 & 124 \end{pmatrix}$$

$$\begin{array}{l}
\text{(T)} \text{ Verify (ayley-Hamilton thm). for the matrix } A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{pmatrix} \quad \text{(NID-2015)} \\
\text{Ind} \quad A^{-1}.
\end{array}$$

Therefore the number
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{pmatrix}$$
. Hence using if find A^{-1} .

Sol: Griven $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{pmatrix}$

Characteristic egnl: 13-5, 2+5,2-5,=0 51=Sum of the main diagonal elements = 1+5-5=1 32 = Sum of the numbers of main diagonal elements $= \begin{vmatrix} 5 & -4 \\ 7 & -5 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ 3 & -5 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = (-25 + 28) + (-5 + 6) + (5 - 4)$

$$= 3+1+1=5$$

$$5_3 = |A| = 1(-25+28)-2(-10+12)-2(14-15) = 1(3)-2(2)-2(-1)$$

$$= 3-4+2=1$$

Hence the characteristic egn) is >3-12+5>-1=0 Verification: By C-H thm/, every square matrix satisfies its own characteristic egnt. .. A3-A2+5A-I=0-0

$$A^{2} = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & -4 \\ 2 & b & -9 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} -5 & -12 & 10 \\ -10 & -23 & 1b \\ -13 & -29 & 17 \end{pmatrix}$$

Hence C-H thm/ verified.

1 Verify Cayley-Hamilton thmy for
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
. Hence using it find $A^{-1} + A^{4}$.

Sol: Griven $A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$ [Jan-2011]

Characteristic egn/: 23-5, 2+522-53=0 5,= Sum of the main diagonal elements = 1+1+3=5 32 = Sum of the minors of main diagonal elements $= \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = (3-0) + (3-2) + (1-0) = 3+1+1=5$

3=14=1(3-0)+1(0-0)+1(0-2)=3-2=1

Hence the characteristic egnl. is \3-62+52-1=0. By C-H thm/., every square matrix satisfies its own characteristic egy/. : A3-5A2+5A-1=0. -0

Verification:

Verification:
$$A^{2} = \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 8 & -2 & 11 \end{pmatrix}, A^{3} = \begin{pmatrix} 11 & -5 & 15 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix} + 5 \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 11 & -5 & 15 \\ 0 & 1 & 0 \\ 30 & -10 & 41 \end{pmatrix} - \begin{pmatrix} 15 & -10 & 20 \\ 0 & 5 & 0 \\ 40 & -10 & 55 \end{pmatrix} + \begin{pmatrix} 5 & -5 & 5 \\ 0 & 5 & 0 \\ 10 & 0 & 15 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence Cayley- Hamilton thml. verified.

$$\begin{array}{l} \text{O} \Rightarrow A^{3} - 5A^{2} + 5A - \overline{1} = 0 \Rightarrow A^{2} - 5A + 5\overline{1} - A^{-1} = 0 \Rightarrow A^{-1} - A^{2} - 5A + 5\overline{1} \\ A^{-1} = A^{2} - 5A + 5\overline{1} = \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 8 & -2 & 11 \end{pmatrix} - 5\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 5 & 0 \end{pmatrix} + 5\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 15 \end{pmatrix} \\ & = \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 0 & -2 & 12 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 5 \\ 0 & 5 & 0 \\ 10 & 0 & 15 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \\ & \therefore A^{-1} = \begin{pmatrix} 3 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & 2 & 1 \end{pmatrix} - \frac{15}{10} \begin{pmatrix} 3 & -2 & 4 \\ 0 & 1 & 0 \\ 30 - 10 & 41 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} \\ & = \begin{pmatrix} 57 & -25 & 715 \\ 0 & 5 & 0 \\ 150 - 50 & 205 \end{pmatrix} - \begin{pmatrix} 15 & -10 & 20 \\ 0 & 5 & 0 \\ 10 & -10 & 55 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 41 & -1b & 5b \\ 0 & 1 & 0 \\ 112 - 40 & 153 \end{pmatrix} - \begin{pmatrix} 15 & -10 & 20 \\ 0 & 5 & 0 \\ 10 & -10 & 55 \end{pmatrix} + \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 41 & -1b & 5b \\ 0 & 1 & 0 \\ 112 - 40 & 153 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 3 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \\ & \therefore A^{3} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1$$

$$A^{-1} = \frac{1}{5} \begin{bmatrix} \begin{pmatrix} -b & -7 & -b \\ -7 & -9 & -7 \\ -b & -7 & -11 \end{pmatrix} + \begin{pmatrix} b & 12 & b \\ 12 & 12 & b \\ b & b & 18 \end{pmatrix} + \begin{pmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix} \\ \therefore A^{-1} = \frac{1}{5} \begin{pmatrix} -5 & 5 & 0 \\ 5 & -2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

(1) Use C-H thmp. to find the value of the matrix given by
$$A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+2, \text{ if the matrix } A=\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
[M/J-2009]

Characteristic egn/: $\lambda^3 - 5, \lambda^2 + 5, \lambda - 5, \delta = 0$ $5_1 = 5$ um of the main diagonal elements = 2 + 1 + 2 = 5 $5_2 = 5$ um of the minors of main diagonal elements $= \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = (2 - 0) + (4 - 1) + (2 - 0) = 2 + 3 + 2 = 7$

3=|A|=2(2-0)-1(0-0)+1(0-1)=4-1=3 Hence the characteristic egn), is $\lambda^3 - 5 \lambda^2 + 7 \lambda - 3 = 0$ Using C-H thmy, we get, $A^3 - 5 A^2 + 7 A - 32 = 0$

 $A^{3}-5A^{2}+7A-32$ $A^{8}-5A^{7}+7A^{6}-3A^{5}+A^{4}-5A^{3}+8A^{2}-2A+2$ $A^{8}-5A^{7}+7A^{6}-3A^{5}$ (-)(+) (-) (+) $A^{4}-5A^{3}+8A^{2}-2A$ $A^{4}-5A^{3}+7A^{2}-3A$

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + \hat{1} = (A^{3} - 5A^{2} + 7A - 3\hat{1})(A^{5} + A) + A^{2} + A + \hat{1}$$

$$= (0)(A^{5} + A) + A^{2} + A + \hat{1} \quad (-1 \text{ by } 0)$$

$$= A^{2} + A + \hat{1}$$

$$= \begin{pmatrix} 5 & 4 & 4 \\ 0 & 1 & 0 \\ A & 4 & 5 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix}$$

```
12 Find An using C-H though, taking A = (1 4). Hence find 13.
   301: Griven A= (1 4)
   Characteristic egnl: 2-5, x+32=0
   3,= Sum of the main diagonal elements = 1+3=4
   32= 11= 3-8=-5
   Hence the characteristic equ). is x-4x-5=0
   Using C-H thmy. we get, A2-4A-15] =0. -0
   An= (A2-4A-5) Q(A) + aA+b2 where Q(A) is the quotient a aA+b2 is the
    :. An = (0) Q(A)+ aA+b2 ( .. by (0)
      An=aA+bî => xn=ax+b -2
  Eigmvalues: 12-42-5=0
                                                                      +1 -5
  Subs/. X=-125 in 1,
     (-1) = a(-1)+b=> (-1) = -a+b -3
       5"= a(5)+b=> 5"= 5a+b -(4)
   (3-4=) (-1)n-5n=-ba=> a=-1[(-1)n-5n]= 1[5n-(-1)n]
    Subs). a value in 3, (-1)"= -1/[5"-(-1)"]+b
                       => b=(-1)"+ \frac{1}{b}[\frac{5}{5}"-(-1)"] = \frac{b(-1)^{n}+5^{n}-(-1)^{n}}{1} = \frac{5}{5}(-1)^{n}+5^{n}
                         : b= 1 [5(-1)"+5"]
       :A" = 1 [5" (-1)"] A + 1 [5 (-1)"+5"] ]
     A3= = = [53-(-1)3] A+ = [5(-1)3+53] 2
        = \frac{1}{6} \left[ 125 + 1 \right] A + \frac{1}{6} \left[ -5 + 125 \right] \hat{1} = \frac{126}{4} A + \frac{120}{4} \hat{1}
        = 21A + 201 = 21 \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} + 20 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 21 & 84 \\ 42 & 63 \end{pmatrix} + \begin{pmatrix} 20 & 0 \\ 0 & 20 \end{pmatrix} = \begin{pmatrix} 41 & 84 \\ 42 & 83 \end{pmatrix}
```

(3) Reduce the matrix
$$\begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{pmatrix}$$
 to diagonal form. $[A/M-2017]$

Let $A = \begin{pmatrix} 10 & -2 & -5 \\ -2 & 2 & 3 \\ -5 & 3 & 5 \end{pmatrix}$

Characterish the main diagonal elements = $10+2+5=17$
 $5_1 = 5$ and of the minors of main diagonal elements

$$= \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix} + \begin{vmatrix} 10 & -5 \\ -5 & 5 \end{vmatrix} + \begin{vmatrix} 10 & -5 \\ -5 & 5 \end{vmatrix} + \begin{vmatrix} 10 & -2 \\ -2 & 2 \end{vmatrix} = (10-9)+(5-0-25)+(20-4)=1+2.5+16=2$$
 $3_3 = |A| = 10(10-9)+2(-10+15)-5(-6+10)=10+10-20=0$

Hence the characteristic eqn. is $\lambda^3 - 17\lambda^2 + 42\lambda = 0$

$$\lambda(\lambda^2 - 17\lambda + 42) = 0$$

$$\lambda = 0, \lambda^2 - 17\lambda + 42 = 0$$

$$(\lambda - 19)(\lambda - 3) = 0$$

$$\lambda = 0, \lambda^2 - 17\lambda + 42 = 0$$

$$(\lambda - 19)(\lambda - 3) = 0$$

$$\lambda = 0, \lambda + 14$$

Hence the examination are $0, 3 \times 14$.

Examination (A-\(\lambda\)) \times 0

\[\frac{x_1}{x_2} - \frac{x_2}{3} - \frac{x_1}{3} \]

 $-\frac{x_1}{2} - \frac{x_2}{3} - \frac{x_3}{3} = 0$

$$-\frac{x_1}{2} - \frac{x_2}{3} - \frac{x_3}{3} = 0$$

$$-\frac{x_1}{3} - \frac{x_2}{3} - \frac{x_3}{3} = 0$$

. ×₂ = ()

Scanned by CamScanner

$$\frac{\lambda = |h|}{-2} \begin{pmatrix} -h & -2 & -5^{-} \\ -2 & -12 & 3 \\ -5 & 3 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \qquad -2x_1 - 12x_2 + 52x_3 = 0 \qquad -2 - \frac{x_1}{4} - \frac{x_2}{2} \\ -5x_1 + 3x_2 - 9x_3 = 0 \qquad -12 \quad 3 \quad -2 \quad -12 \\
\frac{x_1}{-6 - 60} = \frac{x_2}{10 + 12} = \frac{x_3}{48 - 4} \Rightarrow \frac{x_1}{-66} = \frac{x_4}{22} = \frac{x_3}{49} \Rightarrow \frac{x_1}{-6} = \frac{x_2}{2} = \frac{x_5}{4} \\
\Rightarrow \frac{x_1}{-3} = \frac{x_2}{1} = \frac{x_3}{2} \qquad \therefore x_3 = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \\
x_1^{\top} x_2 = \begin{pmatrix} 1 & -5^{-} & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{1} \end{pmatrix} = 1 - 5^{-} + \frac{1}{2} = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 - 15^{-} + \frac{1}{2} = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} = -3 + 1 + 2 = 0 \\
x_1^{\top} x_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{3}{2} \end{pmatrix} \begin{pmatrix} \frac{3}{2} \end{pmatrix} \begin{pmatrix} \frac{3}{2$$

(a) Diagonalize the matrix
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 2 & 6 & 0 \\ 2 & 1 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 2 \\ 1 & 2 & 1 & 2 \\ 1 & -12 & 36 & 1 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 1 & 2 \\ 1 & -12 & 1 & 2 \\ 1 & -12 & 36 & 1 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 & 1 & 2 \\ 1 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 1 & 2 & 1 \\ -12 & 36 & 1 & 2 \\ -12 & -12 & 36 & 1 \end{pmatrix}$

(Invert $A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 & 2 \\ 1 & -12 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 2 \\ -12 & -12 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 2 \\ -12 & -12 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & 36 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 36 & 1 \\ -12 & -12 & -12 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & -12 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 1 \\ -12 & -12 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 1 \\ -12 & -12 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 1 \\ -12 & -12 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 \\ -12 & -12 & 1 & 1 \\ -12 & -12 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 & 1 \\ -12 & -12 & 1 & 1 & 1 \\ -12 & -12 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 36 & 1 & -12 & 1 & 1 & 1 \\ -12 & -12 & 1 & 1 & 1 \\$

Scanned by CamScanner

1. If
$$x_5 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$x_1^T x_5 = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -x_1 + 0x_2 + x_3$$

$$\frac{x_1}{x_3} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0x_1 + x_2 + 0x_3$$

$$\frac{x_1}{x_3} = \frac{x_2}{0 - 0} = \frac{x_3}{-1 - 0} \Rightarrow \frac{x_1}{-1} = \frac{x_2}{0} = \frac{x_3}{-1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{0 - 1} = \frac{x_2}{0 - 0} = \frac{x_3}{-1 - 0} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1 - 0} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} = \frac{x_3}{1}$$

$$\frac{x_1}{1} = \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_3}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2}{0 - 0} \Rightarrow \frac{x_1}{1} \Rightarrow \frac{x_2$$

(15) Reduce the quadratic form
$$3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$$
 to the canonical form through orthogonal transformation. [N/D-2014] [Jan-2011]

Sol: Given: Quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$

[M/J-2013]

A = coeff! $x^2 + \frac{1}{2}$ welf! $xy + \frac{1}{2}$ welf! $xz + \frac{1}{2}$ $xz +$

Characteristic earl:
$$\lambda^{2} - 3$$
, $\lambda^{2} + 3 \ge \lambda - 3 = 0$

S.= Sum of the main diagonal elements = $3 + 5 + 3 = 11$
 $3 \ge -3 \le 0$ m of the minors of main diagonal elements

$$= \begin{vmatrix} 5 - 1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 3 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 15 - 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 15 - 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 15 - 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 15 - 1 \\ -1 & 5 \end{vmatrix} + \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 1 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 1 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 3 - 1 \\ -1 & 5 \end{vmatrix} = \begin{vmatrix} 1 - 1 \\ -1 & 5 - \lambda \end{vmatrix} = \begin{vmatrix} 3 - 1 \\ -1 & 5 - \lambda \end{vmatrix} = \begin{vmatrix} 2 - 18 & 36 \\ 1 & -9 & 18 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 1 & 5 - \lambda \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 - 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

$$= \begin{vmatrix} 1 -$$

· ×2 = ()

Hence the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}, \qquad N^{T} = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$AN = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 7 & -1 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} -1/2 & 1/3 & 1/6 \\ 0 & 1/3 & -2/16 \\ 1/2 & 1/3 & 1/6 \end{pmatrix} = \begin{pmatrix} -2/12 & 3/13 & 6/16 \\ 0 & 3/13 & -12/16 \\ 2/12 & 3/13 & 6/16 \end{pmatrix}$$

$$D = N^{T}AN = \begin{bmatrix} -1/2 & 0 & 1/2 \\ 1/3 & 1/8 & 1/3 \\ 1/6 & -2/6 & 1/6 \end{bmatrix} \begin{bmatrix} -2/2 & 3/3 & 6/6 \\ 0 & 3/2 & -12/6 \\ 2/2 & 3/3 & 6/6 \end{bmatrix} = \begin{bmatrix} 4/2 & 0 & 0 \\ 0 & 2/3 & 0 \\ 0 & 0 & 36/6 \end{bmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

(16) Reduce the quadratic form 2x+5y2+3z2+4xy to a canonical form through an orthogonal transformation. Find also its nature. [AIM 2018] Sol: Given: Quadratic form 2x2+5y2+8z2+4xy Jan - 2012

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Characteristic eggs:
$$x^3 - 5, x^4 + 5, x - 5, x = 0$$
 $5, = 5, \text{ and } = \frac{1}{2}$ the main diagonal elements

$$\begin{vmatrix} 5 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 & 2 \\ 2 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 & 2 & 2 \\ 2 & 3 & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2$$

$$X_{1}^{T}X_{2} = (2 - 1 o) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 , \quad X_{1}^{T}X_{3} = (e - 1 o) \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = 2 - 2 + 0 = 0$$

$$X_{2}^{T}X_{3} = (o o - 1) \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = 0$$
Hance the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} 27 & 0 & \sqrt{7} \\ -\sqrt{7} & 0 & \sqrt{7} \\ 0 & -1 & 0 \end{pmatrix}, \quad NT = \begin{pmatrix} 2\sqrt{7} & -\sqrt{7} & 0 \\ 0 & 0 & -1 \\ \sqrt{7} & 0 & \sqrt{7} & 0 \end{pmatrix}$$

$$AN = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{7} & 0 & \sqrt{7} \\ -\sqrt{7} & 0 & 2\sqrt{7} & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{7} & 0 & \sqrt{7} \\ -\sqrt{7} & 0 & 12\sqrt{7} \\ 0 & -3 & 0 \end{pmatrix}$$

$$D = N^{T}AN = \begin{pmatrix} 2\sqrt{7} & -\sqrt{7} & 0 \\ 0 & 0 & -1 \\ \sqrt{7} & \sqrt{7} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{7} & 0 & \sqrt{7} \\ -\sqrt{7} & 0 & 12\sqrt{7} \\ 0 & -3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

$$C_{1} = \frac{1}{3} + \frac{1}{3$$

Hence the characteristic equil is 13-12 x2+36x-32=0

Hence the eigenvalues are -2,3 & b.

Eigenvectors: (A-XI)X = 0

Example (978:
$$(A-\lambda I)^{(1)}$$
)
$$\frac{1-\lambda}{3} = \frac{1}{5-\lambda} = \frac{3}{1} = 0$$

$$\frac{\lambda = -2}{3} = \frac{3}{1} = \frac{3}{1} = 0$$

$$\frac{\lambda = -2}{3} = \frac{3}{1} = \frac{3}{1} = 0$$

$$\frac{\lambda = -2}{3} = \frac{3}{1} = 0$$

$$\frac{\lambda = -2}{3} = \frac{3}{1} = 0$$

$$\frac{\lambda = -2}{3} = \frac{\lambda = -2}{3} = 0$$

$$\frac{\lambda = -2}{3} = \frac{\lambda = -2}{3} = 0$$

$$\frac{\lambda = -2}{3} = \frac{\lambda = -2}{3} = 0$$

$$\frac{\lambda = -2}{3} = \frac{\lambda = -2}{3} = 0$$

$$\frac{\lambda =$$

$$\frac{\chi_{1}}{1-b} = \frac{\chi_{2}}{3+2} = \frac{\chi_{3}}{-4-1} \Rightarrow \frac{\chi_{1}}{-5} = \frac{\chi_{2}}{5} = \frac{\chi_{3}}{-5} \Rightarrow \frac{\chi_{1}}{-1} = \frac{\chi_{2}}{1} = \frac{\chi_{3}}{-1}$$

$$\therefore \chi_{2} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\therefore X_2 = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

$$\frac{\lambda=6}{3} \begin{pmatrix} -5 & 1 & 3 \\ 1 & -1 & 1 \\ 3 & 1 & -5 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \qquad \begin{array}{c} \chi_1 + \chi_2 + 3\chi_3 = 0 \\ \chi_1 - \chi_2 + \chi_3 = 0 \\ 3\chi_1 + \chi_2 - 5\chi_3 = 0 \end{array} \qquad \begin{array}{c} \chi_1 & \chi_2 & \chi_3 \\ -1 & 1 & 1 & -1 \\ 3\chi_1 + \chi_2 - 5\chi_3 = 0 \end{array}$$

$$\frac{x_1}{1+3} = \frac{x_2}{3+5} = \frac{x_3}{5-1} \Rightarrow \frac{x_1}{4} = \frac{x_2}{8} = \frac{x_3}{4} \Rightarrow \frac{x_1}{1} = \frac{x_2}{2} = \frac{x_3}{1}$$

$$\therefore \times_{5} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

$$X_{1}^{T}X_{2}=(-1 \ 0 \ 1)\begin{pmatrix} -1\\1\\-1 \end{pmatrix}=1+0-1=0$$
, $X_{1}^{T}X_{3}=(-1 \ 0 \ 1)\begin{pmatrix} 1\\2\\1 \end{pmatrix}=-1+0+1=0$

$$X_{2}^{T}X_{3} = (-1 \ 1 \ -1) \left(\begin{array}{c} 1\\2\\1 \end{array}\right) = -1+2-1 = 0$$

Hence the eigenvectors are orthogonal to each other.

$$N = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \\ 0 & 1/\sqrt{3} & 2/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}$$

$$N^{T} = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \\ 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$N^{T} = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \\ 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$N^{T} = \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \\ 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}$$

$$AN = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} -4/2 & -4/3 & 1/6 \\ 0 & 1/3 & 1/6 \\ 1/2 & -1/3 & 1/6 \end{pmatrix} = \begin{pmatrix} 9/12 & -8/13 & 1/16 \\ 0 & 3/13 & 1/2/16 \\ -9/12 & -3/13 & 1/16 \end{pmatrix}$$

$$D = N^{T}AN = \begin{pmatrix} -1/2 & 0 & 1/2 \\ -1/3 & 1/3 & -1/3 \\ 1/6 & 2/16 & 1/6 \end{pmatrix} \begin{pmatrix} 9/12 & -3/13 & 1/16 \\ 0 & 3/13 & 1/2/16 \\ -2/12 & -3/13 & 1/16 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\begin{pmatrix} anonical & form : \\ (y_1 & y_2 & y_3) & -2 & 0 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = -2y_1^2 + 3y_2^2 + 6y_3^2$$

$$\begin{pmatrix} anonical & form & contains & 2 + 1/2 & form & 2 + 1/2 & for$$

Canonical form contains 2 +ve terms & one -ve term. .. Quadratic form is said

Rank = No/. of non-zero terms in C.F = 3

(19) Reduce the quadratic form 2x2+y2+z2+2xy-2xz-4yz to the canonical form. Hence find its nature, rank, index a signature. [AIM-2015] [N/D-2010] Sol: Q.F: 2x2+y2+22+2xy-2xz-4yz

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$$

Characteristic egn/: 13-5, 2+327-33=0

Si=Sum of the main diagonal elements = 2+1+1=4 32= Sum of the minors of main diagonal elements

$$5_2 = 5um$$
 of the minors of main diagonal elements

$$= \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = (1-4) + (2-1) + (2-1) = -3 + 1 + 1 = -1$$

3= |A|=2(1-4)-1(1-2)-1(-2+1)=-6+1+1=-4

Hence the characteristic equ), is >3-4>2->+4=0

Hence the eigenvalues are -1,1&4. Eigenvectors: (A-XI)X=0

Eigenvectors:
$$(A-\lambda I) \times = 0$$

$$\begin{pmatrix} 2-\lambda & 1 & -1 \\ 1 & 1-\lambda & -2 \\ -1 & -2 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$

Canonical form contains 2 +ve termes & one -ve term .: Quadratic form is said to be indefinite. Rank = Nol. of non-zero terms in C.F = 3 Endex = Not. of tre terms in C.F = 2 Signature = (No). of tre larnes - No). of -re terms) in C.F = 2-1=1 20) Reduce the quadratic form x1+2x2+x3-2x,x2+2x2x3 to the canonical form through an orthogonal transformation, & hence show that is tre semi-definite. Also given a non-zero set of values (x,,x2,x3) which makes this quadratic form zero. [M/J-2009] Sol: Griven: Q.F x,+2x2+2x3-2x,x2+2x2x3 $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ Characteristic egnl: 23-3, 2+ 3, 1-53=0 $5_2 = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} = (2-1) + (1-0) + (2-1) = 1+1+1=3$ S3= |A|=1(2-1)+1(-1-0)+0(-1-0)=1-1=0 Hence the characteristic egnl. is >3-42+3>=0 x(x2-4 x+3)=0 1=0, (x-1)(x-3)=0 Hence the eigenvalues are 0,1 & 3: Eigenvectors: (A-XI) X=0 $\begin{pmatrix} 1-\lambda & -1 & 0 \\ -1 & 2-\lambda & 1 \\ 0 & 1 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$ $\frac{\lambda=0}{-1} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 0 \quad -\chi_1 + 2\chi_2 + \chi_3 = 0$ $0\chi_1 + \chi_2 + \chi_3 = 0$ $\therefore \times ^{1} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\frac{\lambda_1}{-1-0} = \frac{\chi_2}{0-1} = \frac{\chi_3}{2-1} = \frac{\chi_1}{-1} = \frac{\chi_2}{-1} = \frac{\chi_3}{1}$

$$\frac{\lambda=1}{-1} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \quad \begin{cases} -x_1 + x_2 + x_3 = 0 \\ -x_1 + x_2 + x_3 = 0 \end{cases} = \begin{cases} -x_3 \\ -x_1 - x_2 + x_3 = 0 \end{cases}$$

$$\frac{x_1}{-1 - 0} = \frac{x_2}{0 - 0} = \frac{x_3}{0 - 1} \Rightarrow \frac{x_1}{-1} = \frac{x_2}{0} = \frac{x_3}{-1} \Rightarrow \frac{x_1}{1} = \frac{x_2}{0} = \frac{x_3}{1}$$

$$\frac{\lambda=1}{-1 - 0} \begin{pmatrix} x_1 \\ 0 \\ 1 \end{pmatrix} = -2x_1 - x_2 + 0x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{2 - 1} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow \frac{x_1}{-1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow \frac{x_1}{1 + 1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow \frac{x_1}{1 + 1} - \frac{x_2}{2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow \frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow \frac{x_1}{1 + 2} = \frac{x_2}{3} = \frac{x_3}{1} \Rightarrow x_3 = 0$$

$$\frac{x_1}{-1 + 0} = \frac{x_2}{0 + 2} = \frac{x_3}{3} \Rightarrow x_1 = \frac{x_2}{1 + 2} = \frac{x_3}{3} \Rightarrow x_1 = \frac{x_1}{1 + 2} = \frac{x_2}{1} \Rightarrow x_2 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_3 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{3} \Rightarrow x_1 = \frac{x_1}{1 + 2} = \frac{x_2}{3} \Rightarrow x_2 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_3 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_1 = \frac{x_2}{1 + 2} \Rightarrow x_2 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_3 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_1 = \frac{x_3}{1 + 2} \Rightarrow x_2 = 0$$

$$\frac{x_1}{1 + 2} = \frac{x_2}{1 + 2} = \frac{x_3}{1 + 2} \Rightarrow x_1 = \frac{x_3}{1$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1/3 & 1/3 & -1/6 \\ -1/3 & 0 & 2/6 \\ 1/3 & 1/3 & 1/6 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$x_1 = -1$$
, $x_2 = -1$, $x_3 = 1$

These values x1, x2, x3 make the Q.F. zero.

Vendication: x,=-1, x2=-1, x3=1 Q.F= x, +2x2+x3-2x, x2+2x2x3 =1+2+1-2-2=0

Properties:

Prove that the eigenvalues of a real symmetric matrix are real. [M/J-2014]

Proof: Let \(\) be an eigenvalue of the real symmetric matrix A. Let the corresponding eigenvector be \(\). Let AT denote the transpose of A.

He have AX=XX

Pre-multiplying this egn/ by Ixn matrix XT, where the bar denotes the complex conjugate of xT, we get

$$\overline{X}^{T}AX = \lambda \overline{X}^{T}X \longrightarrow 0$$

Taking complex conjugate, we get

$$x^{T} \bar{\lambda} \bar{x} = \bar{\lambda} x^{T} \bar{x}$$

Taking transpose on both sides, we get

$$T(\vec{x}^T \times \vec{x}) = T(\vec{x} \wedge T \times)$$

$$X^TX^TX = X^TA^TX$$

From O & O, $\lambda \overline{\chi}^T \chi = \overline{\lambda} \ \overline{\chi}^T \chi \implies \lambda = \overline{\lambda}$. Hence λ is real

22 21 à is an eigenvalue et a matrix A, thun \(\(\lambda \nu \) is the eigenvalue et A-1.

Proof: Given \(\lambda \) is an eigenvalue et a matrix A. Let the corresponding [M/J-2012]

eigenvector be X. Then we have AX=XX Pre-multiplying both sides by A-1, we get A-1Ax=A-1XX $2x = \lambda A^{-1}x$

X = X A-1 X $\Rightarrow \lambda \Rightarrow \frac{1}{\lambda} X = A^{-1} X$

From this we get, I is an eigenvalue of A-1.

(23) 21 \(\lambda\) for (i=1,2,...,n) are the non-zero eigenvalues of A, then prove that KX; are the eigenvalues of KA, where K being a non-zero scalar. [M/J-2012] Proof: Given 2: (i=1,2,...,n) are the non-zero eigenvalues of A. Let the corresponding eigenvectors be X; (i=1,2,...,n). Then we have

 $A \times_{i} = \lambda_{i} \times_{i} \quad (i=1,2,...,n)$

Pre-nultiplying both sides by K, we get

KAX;= KX; X;

From this we get $K\lambda_i$ (i=1,2,...,n) are the eigenvalues of KA.

24 24 1, 22, ..., In are the eigenvalues of a matrix A, then Am has the eigenvalues $\lambda_1^m, \lambda_2^m, \ldots, \lambda_n^m$ (m being a tre inlêger)

Proof: Given Di (i=1,2,...,n) are the eigenvalues of A. Let the corresponding eigenvectors be X; (i=1,2,...,n) : Then we have

 $A \times_{i} = \lambda_{i} \times_{i} \mathcal{I}_{0}^{i=1,2,...,n}$ $A^2x_i = A\lambda_i \times_i = \lambda_i Ax_i = \lambda_i (\lambda_i \times_i) (\cdot by 0)$

 $A^2 \times i = \lambda_i^2 \times i$

Similarly we get, A3xi = xixi

In general, AMX:= \impx;

From this we get, $\lambda_1^m, \lambda_2^m, \ldots, \lambda_n^m$ are the eigenvalues of A^m .

25) Find the sum & product of the eigenvalues of the matrix (-2 2 -3).

501: Sum of the eigenvalues = Sum of the main diagonal elements = -2+1+0=-1

Product of the eigenvalue = 1A1 = -2 (0-12)-2(0-6)-3(-4+1) = 24+12+9=45 (26) The product of 2 eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigenvalue. Sol: Given Like=16 -0 Product of eigenvalues = 11 = 6(9-1)+2(-6+2)+2(2-6) = 48-8-8 = 32 1,12/3=32 16 x 3 = 32 (- by 0) $\lambda_3 = \frac{32}{16} = 2 \qquad \therefore \lambda_3 = 2$ Q7) Two of the eigenvalues of A = 3 -1 1 are 3 &b. Find the eigenvalues of A-1. 301: Gliven 1=3 & 12=6 Sum of the eigenvalues = Sum of the main diagonal elements $3+b+\lambda_3=11 \Rightarrow 9+\lambda_3=11 \Rightarrow \lambda_3=11-9=2$ Hence the eigenvalues of A-1 are $\frac{1}{3}$, $\frac{1}{6}$ & $\frac{1}{2}$. (28) Find the eigenvalues of A3 given A= (1 2 3). Dol: Giren matrix d is a upper triangular matrix. i Eigenvalues of A are 1,2 & 3. (Entries of main diagonal elements)

Hence the eigenvalues of A3 are 13,23 & 38 (ii) 1,8 & 27. (29) The eigenvectors of a 3x3 real symmetric matrix A corresponding to the eigenvalues 2,3,6 are [1,0,-1], [1,1,1] ~ [-1,2,-1] respectively, find the matrix A. $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ $N = \begin{pmatrix} 1/2 & 1/3 & -1/6 \\ 0 & 1/3 & 2/6 \\ -1/2 & 1/3 & -1/6 \end{pmatrix}$

$$A = NDN^{T} = \begin{pmatrix} \chi_{2} & \chi_{3} & -\chi_{6} \\ 0 & \chi_{3} & 2\chi_{6} \\ -\chi_{2} & \chi_{3} & -\chi_{6} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} \chi_{2} & 0 & -\chi_{2} \\ \chi_{3} & \chi_{3} & \chi_{3} \\ -\chi_{6} & 2\chi_{6} & -\chi_{6} \end{pmatrix} = \begin{pmatrix} \chi_{2} & \chi_{3} & \chi_{3} & \chi_{3} \\ 0 & \chi_{3} & 2\chi_{6} \\ -\chi_{2} & \chi_{3} & -\chi_{6} \end{pmatrix} \begin{pmatrix} 2\chi_{2} & 0 & -2\chi_{2} \\ 3\chi_{3} & 3\chi_{3} & 3\chi_{3} \\ -3\chi_{6} & 12\chi_{6} & -3\chi_{6} \end{pmatrix} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -2 & 1 + 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1+1+1 & 1-2 & -1+1+1 \\ 1-2 & 1+4 & 1-2 \\ -1+1+1 & 1-2 & 1+1+1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

Diagonalisation of non-symmetric matrix:

Characleristic egnl. x2-5,2+52=0

5,= Sum of the main diagonal elements = 1+4=5

$$S_2 = |A| = 4 - 10 = -b$$

Hence the characteristic egn), is $\lambda^2 - 5 \lambda - b = 0$

$$(\lambda - b)(\lambda + i) = 0$$

$$\lambda - b + i$$

Hence the eigenvalues are -1 &b.

Eigenvectors:
$$(A-\lambda \Sigma) \times = 0$$

$$\begin{pmatrix} 1-\lambda & -2 \\ -5 & 4-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

$$= 0$$

$$\begin{pmatrix}
1-\lambda & -2 \\
-5 & 4-\lambda
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = 0$$

$$2x_1 - 2x_2 = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = \frac{x_2}{1}$$

$$\frac{\lambda = -1}{2} \begin{pmatrix} 2 & -2 \\ -5 & 5 \end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = 0$$

$$-5x_1 + 5x_2 = 0 \Rightarrow x_1 - x_2 = 0$$

$$\frac{\lambda = b}{\lambda = b} \begin{pmatrix} -5 & -2 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0 \quad -5\chi_1 - 2\chi_2 = 0$$

$$\frac{\lambda = b}{\lambda = b} \begin{pmatrix} -5 & -2 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0 \quad -5\chi_1 - 2\chi_2 = 0$$

$$P^{-1} = \frac{1}{1P1} Adj P = \frac{1}{-5-2} \begin{pmatrix} -5-2 \\ -1 \end{pmatrix} = \frac{1}{-7} \begin{pmatrix} -5-2 \\ -1 \end{pmatrix}$$

$$AP = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} -1 & 12 \\ -1 & -30 \end{pmatrix} = \frac{-1}{7} \begin{pmatrix} 7 & 0 \\ 0 & -42 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$$

$$D = P^{-1}AP = \frac{-1}{7} \begin{pmatrix} -5 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 12 \\ -1 & -30 \end{pmatrix} = \frac{-1}{7} \begin{pmatrix} 7 & 0 \\ 0 & -42 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 6 \end{pmatrix}$$

$$\text{Reduce the matrix} \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$

$$\text{Chave Invisite asyle: } \lambda^{3} - 5_{1}\lambda^{2} + 5_{2}\lambda - 5_{3} = 0$$

$$S_{1} = -1 + 2 + 0 = 1$$

$$S_{2} = \frac{2}{1-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & -2 \\ -1 & 0 \end{pmatrix} + \begin{vmatrix} -1 & 2 \\ -1 & 0 \end{pmatrix} = (0 + 1) + (0 - 2) + (-2 - 2) = 1 - 2 - 4 = -5$$

$$\text{Hence the characteristic asyle is } \lambda^{3} - 5_{1}\lambda^{2} + 5_{2}\lambda + 5_{3} = 0$$

$$\lambda^{2} = |A| = -1 (0 + 1) - 2 (0 + 1) - 2 (-1 + 2) = -1 - 2 - 2 = -5$$

$$\text{Hence the characteristic asyle is } \lambda^{3} - 5_{1}\lambda^{2} + 5_{2}\lambda + 5_{3} = 0$$

$$\lambda^{2} = |A| = -1 (0 + 1) - 2 (0 + 1) - 2 (-1 + 2) = -1 - 2 - 2 = -5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 (0 + 1) - 2 (-1 + 2) = -1 - 2 - 2 = -5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 2 = -5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (-1 + 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) + (0 - 2) + (-2 - 2) = 1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) + (0 - 2) + (-2 - 2) = 1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) + (0 - 2) + (-2 - 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) + (0 - 2) + (-2 - 2) = -1 - 2 - 5$$

$$\lambda^{2} = |A| = -1 \cdot (0 + 1) - 2 \cdot (0 + 1) - 2 \cdot (0 + 1) + (0 - 2) + (0$$

$$\frac{X_{1}}{1} = \frac{2}{1-1} = \frac{$$

Characteristic egn/: 13-5, 2+ 522-53=0

Scanned by CamScanner

$$S_{1}=0+1+2=3$$

$$S_{2}=\begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -2 \\ -1 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -1 \end{vmatrix} + \begin{vmatrix} 0 & -2 \\ -1 \end{vmatrix} = (2+2)+(o-2)+(o-2)=4-2-2=0$$

$$S_{3}=0+2(-2+2)-2(1+1)=-4$$
Hence the characteristic eqn. is $\lambda^{3}=3\lambda^{2}+4=0$

$$\lambda=2\begin{vmatrix} 1 & -3 & 0 & 4 \\ 2 & -2 & -4 \\ 1 & -1 & -2 & 0 \end{vmatrix}$$

$$\lambda^{2}-\lambda-2=0$$

$$(\lambda+1)(\lambda-2)=0$$

$$(\lambda+1)(\lambda-2$$

DIFFERENTIAL CALCULUS

Representation of function:

(i) Verbally (by a description in words)

(ii) Visually (by a graph)

(iii) Numerically (by a table of values)

(iv) Algebraically (by an explicit formula)

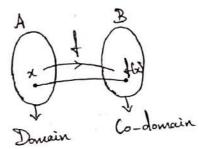
Definition: (Real-valued functions)

A function, whose domain & co-domain are subsets of the set of all real numbers, is known as real-valued function.

Definition:

Let f: A>B, then set A is called the domain of the function & set B is called the co-domain of the function.

The set of all the images of all the elements of A under the function of is called the range of I is denoted by 4(A). Thus the range of & is $f(A) = \{f(x) : x \in A\}$.



Definition: (Explicit function)

If x & y be so related that y can be expressed explicitly in terms of x, then y is called explicit function of x.

E.g: y=x2-4x+2

Definition: (2 implicit function)

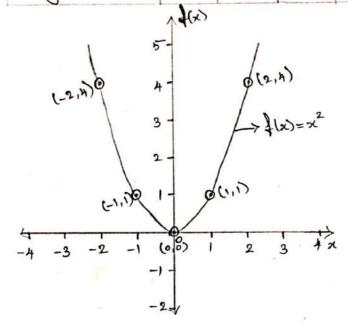
If x & y be so related that y cannot be expressed explicitly in terms of x, then y is called implicit function of x. Eg: x3+y3-3xy=0.

Problems:

1 Find the domain & range & sketch the graph of the function $f(x) = x^2$.

Sol: Given $f(x) = x^2$

Domain (x)	- 00	 -2	-1	o	١	2	 00
Range (f(x))	20	 4	1	0	١	4	 00



Domain =
$$(-\infty, \infty)$$

@ Find the domain & range of f(x)= 15x+10.

Domain (x)	-2	-1	0	١	2	 00
Range (4(x))	o	15	510	112	120	 ∞

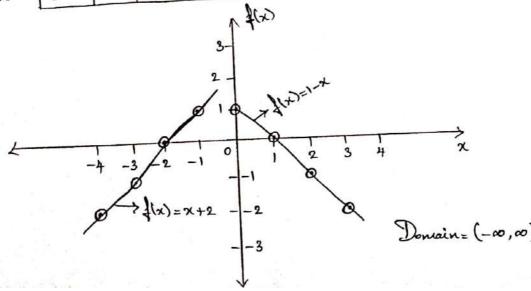
3 Find the domain of
$$\frac{x+4}{x^2-9}$$

$$x^2-9=0 \Rightarrow x^2=9 \Rightarrow x=\sqrt{9}=\pm 3$$

1 Find the domain & sketch the graph of the function

			T		\ ,	. 1
240	X	- 1	-2	-3	1-4	
	1(2)	1	0	-1	-2	
f(x)=x+2	4(1)					

4 (1/-)						
x≥o_	x	0)	2	3	
f(x)=1-x	\$(x)	1	0	1-1	-2	
4(x)=1-x		1	1		٨	



(hu)
(b) Find the domain of f(x)= \(\int_{3-x} - \sqrt{2+x}\).

501: Gliven 4(x)=13-x-12+x

Have 3-x >0 & 2+x >0

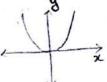
> 3≥x & x≥-2

=> -2 ビル 43

Domain = [-2,3]

Definition:

Even function: f(-x) = f(x) [br) symmetric about the y-axis)



E.g: 07(x)=1-x4

f(-x) = 1-(-x) = 1-x4=f(x)

-: f(-x)=f(x)

Hence $f(x)=1-x^{4}$ is an even function.

 $f(-x) = \cos(-x) = \cos x = f(x)$: f(x) = cosx is an even function.

Odd function: f(-x) = -f(x) [(or) symmetric about the x-axis]

E.g. 0 (x) = x5+x

 $\frac{1}{4}(-x) = (-x)^{\frac{1}{2}} + (-x) = -x^{\frac{1}{2}} - x = -(x^{\frac{1}{2}} + x) = -\frac{1}{4}(x)$

 $\therefore f(-x) = -f(x)$

Hence f(x)=x+x is an odd function.

2 f(x) = sinx f(-x) = sin(-x) =-sinx=-f(x)

Hence f(x) = sinx is an odd function.

Example for neither even nor odd function:

1 = 1 = 1 = 1

 $\frac{1}{4}(-x) = \frac{1}{-x-1} + \frac{1}{4}(x) + -\frac{1}{4}(x)$

Hence the given function is neither even nor odd.

(2) = ex

f(-x)=e-x + f(x) + - f(x).

Hence $f(x)=e^{x}$ is neither even nor odd function.

(Find the domain of $f(x) = \sqrt{x+2}$.

2) Find the domain of f(x) = 1/2-x

Limit of a function:

lim f(x) = l is $f(x) \rightarrow l$ as $x \rightarrow a$ (or) f(x) approaches l as $x \rightarrow a$

x approaches a.

Laft-hand limit:

$$\lim_{x \to a^{-}} f(x) = 1$$

Here x > a means x < a.

Right-hand limit:

Here x > at means x > a.

Definition:

lim
$$f(x) = 1$$
 if a only if $\lim_{x \to a^{-}} f(x) = 1 \Rightarrow \lim_{x \to a^{+}} f(x) = 1$.

Problems:

The value of lim x-1.

301: Here
$$f(x) = \frac{x-1}{x^2-1}$$

x	2<1					
x	\$(x)					
0.5	0.66667					
0.6	0.625					
0.7	0.58824					
0.8	0.55556					
0.9	0.52632					
0.99	0.50251					
0.999	0.50025					

x	\$(x)
1.5	0.4
1.4	0.41667
1.3	0.43478
1.2	0.45455
1.1	0.47619
1.01	0.49751
1.001	0.49975

:
$$\lim_{x \to 1} \frac{x-1}{x^2-1} = 0.5$$

(H.w) Guess the value of lim sinx.

by evaluating the function at the given numbers $x = \pm 0.5$, ± 0.1 , ± 0.01 , ± 0.001 (correct to 6 decimal places)

501: Hare
$$f(x) = \frac{6x}{x} - 1$$

x	\$(x)		
-0.5	1.83583		
-0.1	3.934693		
-0.01	4.877058		
-0.001	4.987521		
-0.0001	4.99875		

$$\frac{1}{x \to 0} = \frac{5x}{x} = 5$$

(I) Evaluate
$$\lim_{t\to 1} \frac{t^4-1}{t^3-1}$$
.

$$\frac{50!}{1+3!} = \lim_{t \to 1} \frac{2^{t}-1}{2^{t}-1} = \lim_{t \to 1} \frac{4t^{3}}{3t^{2}} = \frac{4}{3}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(c) = 0 \text{ where } c \text{ is a }$$
constant

(AU) Griven that
$$\lim_{x\to 2} \frac{1}{4(x)} = 4 \times \lim_{x\to 2} \frac{1}{4(x)} = -2$$
. Find the limit that exists for $\lim_{x\to 2} \left[\frac{3}{4(x)} \right]$.

$$\lim_{x\to 2} \left[\frac{3+(x)}{3(x)} \right] = \frac{3(4)}{-2} = -6$$

(AUI) Sketch the graph of the function
$$f(x) = \begin{cases} 1+x, & x < -1 \\ x^2, & -1 \le x \le 1 \end{cases}$$

to determine the value of 'a' for which lim f(x) exists?

3	~	2-x			>	
1	ハーノー	7 1	,	-	-	1

x	- 2.	-3	-4
(x)	-1	- 2	-3

X.	1	0	١
1(x)	. 1	0	1

×	1	2.	3
\$(x)	1	0	-1

(1,0 Q 1 + 10 p (1,0)

At x=-1

$$\lim_{x\to -1^+} \frac{1}{4(x)} = \lim_{x\to -1^+} x^2 = (-1)^2 = 1$$

: lim f(x) doesn't exist.

$$\lim_{x\to 1^{-}} \frac{1}{x} = \lim_{x\to 1^{-}} x^2 = 1^2 = 1$$

$$\lim_{x \to 1^+} \frac{1}{4}(x) = \lim_{x \to 1^+} (2-x) = 2-1 = 1$$

: lim f(x) exists.

Hence lim f(x) exists for all 'a' except at a=-1.

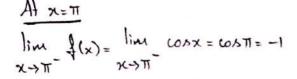
(2) Sketch the graph of the function
$$f(x) = \begin{cases} 1 + \sin x & i \neq x < 0 \\ \cos x & i \neq 0 \leq x \leq \pi \end{cases}$$
sinx if $x > \pi$

determine the value of 'a' for which lim f(x) exists.

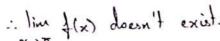
51.		f(x)= 1+sinx, x <0		= 1+sinx, x < 0 \ +(x) = cosx, 0 \ x \le T			f(x) = sinx, x > T	
<u>201.</u>	x	- T/2	Т-П	0	π/2	π	317	211
	\$(x)	0)	1	0	-1_		0

At x=0

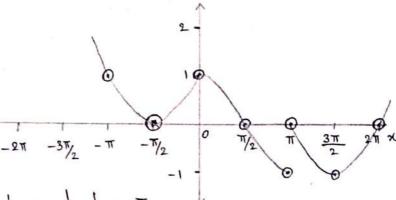
: lim f(x) exists.



 $0 = \pi ni x = x ni x$ $f(x) = \lim_{x \to \pi^{+}} f(x) = 0$



: lim f(x) doesn't exist.



Hence lim &(x) exists for all 'a' except at a=T.

(13) Check whether line 3x+9 exist.

Sol:
$$\lim_{x\to -3} \frac{3x+9}{-(x+3)} = \lim_{x\to -3} \frac{3(x+3)}{-(x+3)} = -3$$

 $\lim_{x \to -3} \frac{3x+9}{x+3} = \lim_{x \to -3} \frac{3(x+3)}{x+3} = 3 \cdot \text{Here lim} \quad \frac{1}{x} = \lim_{x \to -3} \frac{1}{x} = \lim_{x \to -3$

: lim f(x) doesn't exist.

Definition: (Continuity)

A function of is continuous at 'a' if lim f(x) = f(a).

(i) If is continuous at a , then

- (i) f(a) should exist
- (ii) line f(x) exists both on the left a right.
- (iii) lim f(x) = f(a).

Eg: Polynomials, rational functions, root functions, trignometric functions, inverse trignometric functions, exponential functions, logarithmic functions.

(14) Find the numbers that at which of is discontinuous, at which of these numbers if it is continuous from the right from the left or neither? When $f(x) = \begin{cases} x+2, & x < 0 \\ e^x, & 0 \le x \le 1 \end{cases}$

 $\lim_{x\to 0} \frac{1}{x} = \lim_{x\to 0} (x+2) = 0+2=2$

lim f(x) = lim ex = e = 1

f(0) = e = 1

: lim f(x) = f(0) + lim f(x).

Hence of is continuous on the right at x=0 & of is discontinuous on the left at x=0.

:. f is discontinuous at x=0.

 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} e^x = e^1 = e$

 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (2-x) = 2-1=1$

£(i) = e' = e

: lim f(x)=f(i) = lim f(x)

Hence of is continuous on the left at x=1 & f is discontinuous on the right at x=1.

if is discontinuous at x=1.

Thus of is continuous in (-00,0) U(0,1) U(1,00).

(H.W) Find the domain where the function of is continuous. Also find the numbers at which the function of is discontinuous, where

$$\frac{1}{4}(x) = \begin{cases} 1+x^2, & x \leq 0 \\ 2-x, & 0 < x \leq 2 \\ (x-2)^2, & x > 2 \end{cases}$$

(15) For what value of the constant b, is the function of continuous on $(-\infty, \infty)$ if $f(x) = \int bx^2 + 2x$ if x < 2. $\begin{cases} x^3 - bx & \text{if } x \ge 2 \end{cases}$

$$\lim_{x \to 2^{-}} \frac{1}{x} (x) = \lim_{x \to 2^{-}} (bx^{2} + 2x) = 4b + 4$$

$$f(2) = (2)^3 - b(2) = 8 - 2b$$

$$\Rightarrow 6b = 4 \Rightarrow b = \frac{4}{6} = \frac{2}{3}$$

(A) Find the values of a & b that make of continuous on (-0,0).

$$\frac{1}{4(x)} = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{if } x < 2 \\ ax^2 - bx + 3, & \text{if } 2 \le x < 3 \\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\lim_{x\to 2^{-}} \frac{1}{x} = \lim_{x\to 2^{-}} \frac{x^{\frac{3}{2}} - 8}{x-2} = \lim_{x\to 2^{-}} \frac{3x^{\frac{2}{2}}}{1} = \lim_{x\to 2^{-}} 3x^{\frac{2}{2}} = 3(2)^{\frac{1}{2}} = 12$$

$$\frac{1}{2}(2) = a(2)^2 - b(2) + 3 = 4a - 2b + 3$$

Since f is continuous, $\lim_{x\to 2} f(x) = f(2)$

$$\Rightarrow$$
 12 = 4a - 2b + 3 \Rightarrow 4a - 2b = 12 - 3 = 9 \Rightarrow 4a - 2b = 9 \longrightarrow

A = 3

$$\lim_{x\to 3^{-}} \frac{1}{4(x)} = \lim_{x\to 3^{-}} ax^{2} - bx + 3 = a(3)^{2} - b(3) + 3 = 9a - 3b + 3$$

$$f(3) = 2(3) - a + b = b - a + b$$

Since
$$\frac{1}{4}$$
 is continuous, $\lim_{x\to 3^{-}} \frac{1}{4(x)} = \frac{1}{3}$

$$\Rightarrow$$
 9a-3b+3=b-a+b \Rightarrow 9a+a-3b-b=6-3

$$0 \times 2 \implies 8a - 4b = 18$$

$$10a - 4b = 3 - 2$$

$$(-) (+) (-)$$

$$-2a = 15 \implies a = \frac{15}{-2}$$

$$\alpha = \frac{-15}{2}$$

Substituting a value in
$$\mathbb{O}$$
, $4\left(\frac{-15}{2}\right) - 2b = 9$

$$\Rightarrow -30-2b=9 \Rightarrow 2b=-30-9=-39 \Rightarrow \boxed{b=\frac{-39}{2}}$$

Hence
$$a = \frac{-15}{2} + b = \frac{-39}{2}$$

(1) If
$$f(x) = \int \frac{x^2-4}{x-2}$$
, $x < 2$ is continuous for all real x , find the $\int ax^2-bx+3$, $2 \le x < 3$
 $2x-a+b$, $x \ge 3$

values of a & b.

Formulae:

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(3)
$$\frac{d}{dx}(c\frac{1}{2}(x)) = c\frac{d}{dx}$$
 (3) $\frac{d}{dx}(c\frac{1}{2}(x)) = c\frac{d}{dx}$.

(4) Equation of tangent line is $y-y_1 = m(x-x_1)$ where $m = \frac{dy}{dx}$.

Problems:

(17) Find the derivative of the following:-

(i)
$$\frac{1}{4}(x) = x^{1000}$$

 $\frac{1}{4}(x) = 1000x^{1000-1} = 1000x^{99}$

(ii)
$$y = \frac{1}{x^2}$$

 $y = \frac{1}{x^2} = x^{-2}$
 $y' = (-2)x^{-2-1} = (-2)x^{-3} = \frac{-2}{x^3}$

(iii)
$$y = \sqrt[3]{x^2}$$

 $y = (x^2)^{\frac{1}{3}} = x^{\frac{2}{3}}$
 $y' = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}$

(iv)
$$y = x^8 + 12x^5 - 4x^4 + 10x^3 - 6x + 7$$

 $y' = 8x^7 + 12(5x^4) - 4(4x^3) + 10(3x^2) - 6$
 $y' = 8x^7 + 60x^4 - 16x^3 + 30x^2 - 6$

(v)
$$y = ax^{2n} + bx^{n} + c$$

 $y' = a(2n)x^{2n-1} + bnx^{n-1} = 2anx^{2n-1} + bnx^{n-1}$

(vi)
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

 $y = x^{-1/2} \left(x^2 + 4x + 3 \right) = x^{-1/2} x^2 + 4x x^{-1/2} + 3x^{-1/2} = x^{3/2} + 4x^2 + 3x^{-1/2}$
 $y' = \frac{3}{2} x^{3/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{-1/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{-1/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$
 $y' = \frac{3}{2} x^{-1/2-1} + \frac{1}{2} x^4 x^{-1/2-1} + 3 \left(-\frac{1}{2} \right) x^{-1/2-1}$

Does the curve $y = x^{\frac{1}{2}} - 2x^{\frac{2}{2}} + 2$ have any horizontal tangents? If so where?

Sol: Given y=x+2x+2 Horizontal tangents occur where the derivative is zero.

$$\begin{array}{c} (a) \frac{dy}{dx} = 0 \Rightarrow 4x^3 - 4x = 0 \Rightarrow 4x(x^2 - 1) = 0 \\ \Rightarrow x = 0, x^2 - 1 = 0 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \end{array}$$

: x=0,1,-1

17	-	-1	0	1
2	5	١	2	1

Hence the corresponding points are (-1,1), (0,2) & (1,1).

(19) The equation of motion of a particle is s=2+3-5+2+3+47, where I is measured in centimeters & t in seconds. Find the acceleration as a function of time. What is the acceleration after 2 seconds?

Sol: Velocity =
$$\frac{ds}{dt} = 6t^2 - 10t + 3$$

Acceleration = $\frac{d^2s}{dt^2} = 12t - 10$

$$\left[\frac{d^2s}{dt^2}\right]_{t=2} = 12(2) - 10 = 24 - 10 = 14$$

(H.W) Problem:

OFind the derivative of the following functions: (ii) $y = x^{1/2}$ (iii) $y = x^{2}(1-2x)$ (iv) $y = x^{2.4} + e^{2.4}$

Formulae:

(1)
$$\frac{d}{dx}(a^{2x}) = a^{2x}$$
. $2 = 2e^{2x}$

Problems:

20 Find the derivative of the following functions:

$$y' = 3e^{x} + 4(-y_3)x^{-y_3-1} = 3e^{x} - \frac{4}{3}x^{-\frac{4}{3}}$$

(ii)
$$y = a^{x}$$

 $y = a^{x} = e^{\log a^{x}} = e^{\log a} = e^{(\log a)x}$

(H. D) Find the derivative of the following functions:

Formulae:

$$2 \frac{d}{dx} \left(\frac{u}{r} \right) = \frac{4u' - uv'}{v^2}$$

$$f'(x) = x^{4}(e^{x}) + e^{x}(4x^{3})$$

$$= x^{4}e^{x} + 4e^{x}x^{3} = e^{x}(x^{4} + 4x^{3})$$

$$\frac{1}{4} (x) = e^{x} (4x^{3} + 12x^{2}) + (x^{4} + 4x^{3}) e^{x}$$

$$= e^{x} (4x^{3} + 12x^{2} + x^{4} + 4x^{3})$$

$$= e^{x} (x^{4} + 8x^{3} + 12x^{2})$$

$$u = x^{4}$$
, $y = e^{x}$
 $u' = 4x^{3}$, $y' = e^{x}$
 $d(uy) = uy' + yu'$

$$u = e^{x}$$
, $v = x^{4} + 4x^{3}$
 $u' = e^{x}$, $v' = 4x^{3} + 12x^{2}$

(22) If
$$f(x) = \frac{x^2}{1+2x}$$
, then find $f'(x) & f''(x)$.

Sol: Given
$$f(x) = \frac{x^2}{1+2x}$$

$$\frac{\frac{1}{1+2x}(2x) - x^{2}(2)}{(1+2x)^{2}}$$

$$= \frac{2x+4x^{2}-2x^{2}}{(1+2x)^{2}} = \frac{2x^{2}+2x}{(1+2x)^{2}}$$

$$f''(x) = \frac{(1+2x)^2(4x+2) - (2x^2+2x) + (1+2x)}{(1+2x)^4}$$

$$= \frac{(1+2x)\left[(1+2x)(4x+2)-4(2x^{2}+2x)\right]}{(1+2x)^{4}}$$

$$=\frac{4x+2+8x^{2}+4x-8x^{2}-8x}{(1+2x)^{3}}=\frac{2}{(1+2x)^{3}}$$

$$d\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$u = x^2, \quad v = 1 + 2x$$

$$u' = 2x, \quad v' = 2$$

$$u=2x+2x$$
, $V=(1+2x)^{2}$
 $u'=4x+2$, $V'=2(1+2x)\cdot 2$
 $V'=4(1+2x)$

(AU) If $f(x) = xe^x$ then find the expression for f''(x).

$$f'(x) = xe^{x} + e^{x}(1) = xe^{x} + e^{x}$$

$$f''(x) = xe^{x} + e^{x}(1) + e^{x} = xe^{x} + 2e^{x} = e^{x}(x+2)$$

$$u = x$$
, $v = e^{x}$
 $u' = 1$, $v' = e^{x}$
 $d(uv) = uv' + vu'$

$$u = x^{2}e^{2x}$$

 $u' = x^{2}(e^{2x}.2) + e^{2x}(2x)$

$$v = (x^2 + 1)^4$$
 $v' = 4(x^2 + 1)^3 (2x)$

$$\frac{dy}{dx} = x^{2}e^{2x} \left(4(x^{2}+1)^{3}(2x) + (x^{2}+1)^{4} \left(2x^{2}e^{2x} + 2xe^{2x} \right) \right)$$

$$= (x^{2}+1)^{3} \left[8x^{3}e^{2x} + (x^{2}+1) 2xe^{2x}(x+1) \right]$$

$$= (x^{2}+1)^{3} 2xe^{2x} \left[4x^{2} + (x^{2}+1)(x+1) \right]$$

Descripatives. The find the equation for f'(x) using the concept of derivatives.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1 - (x+h)}{2 + (x+h)} - \frac{1 - x}{2 + x}$$

=
$$\lim_{h\to 0} \frac{(1-x-h)(2+x)-(1-x)(2+x+h)}{h(2+x)(2+x+h)}$$

$$h \to 0 \qquad h(2+x)(2+x+h)$$
= $\lim_{h \to 0} \frac{2+x-2x-x^2-2h-xh-(2+x+h-2x-x^2-xh)}{h(2+x)(2+x+h)}$

=
$$\lim_{h\to 0} \frac{2+x-2x-x^2-2h-xh-2-x-h+2x+x^2+xh}{h(2+x)(2+x+h)}$$

=
$$\lim_{h\to 0} \frac{-3h}{h(2+x)(2+x+h)} = \lim_{h\to 0} \frac{-3}{(2+x)(2+x+h)}$$

$$= \frac{-3}{(2+x)(2+x)} = \frac{-3}{(2+x)^2}$$

& Differentiate the following functions

$$(15)\frac{1}{4}(x) = \frac{x^2 + x - 2}{x^3 + 6}$$

Formulae:

Problems:

(26) Find the derivative of the following:

(i) y= corecx +excotx

y'=-cosecxcotx+[-excosecx+exotx]

= - cosecx cotx +ex (-cosecx + cotx)

u=secx, V=1+tanx u'= secxtanx, v'= sec2x $q\left(\frac{n}{\lambda}\right) = \frac{\lambda n_1 - n_2}{n_3}$

= secx [tanx + tan2x - secx) secx (tanx-1) (:1+tan2x = sec2x)

(1+lanx)2

Find the 15 derivative.

$$\frac{50!}{50!} \text{ Given } f(x) = \cos x.$$

$$f'(x) = -\sin x$$

$$f''(x) = -\cos x$$

$$f'''(x) = \sin x$$

$$f'''(x) = \sin x$$

$$f(4)(x) = \cos x$$

$$\vdots$$

$$f^{(24)}(x) = \cos x$$

$$f^{(25)}(x) = -\sin x$$

(H.w) Problem:

1 Find the derivative of the following:

$$\frac{x_{xx}}{x_{xix}-1}=y(i)$$

$$(5) \frac{d}{dx} (cosec^{-1}x) = \frac{-1}{x\sqrt{x^2-1}}$$

(2)
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\sinh^{-1}x\right) = \frac{1}{\sqrt{1+x^2}}$$

$$(9) \frac{d}{dx} (sech^{-1}x) = \frac{-1}{x \sqrt{1-x^2}}$$

(2)
$$coshx = \frac{e^{\chi} + e^{-\chi}}{2}$$

(20)
$$\sinh x = \frac{e^{\chi} - e^{-\chi}}{2}$$

$$\frac{50!}{9!} = \frac{1}{2} \left(\cos \sqrt{x} \right)^{1/2} \left(-\sin \sqrt{x} \right) \left(\frac{1}{2} x^{1/2} \right)$$

$$d = \frac{1}{2} (\cos \sqrt{x})^{-1/2} (-\sin \sqrt{x}) (\frac{1}{2} x^{-1/2}) = \frac{-\sin \sqrt{x}}{4 \sqrt{\cos \sqrt{x}} \sqrt{x}}$$

$$= \frac{1}{2} (\cos \sqrt{x})^{-1/2} (-\sin \sqrt{x}) (\frac{1}{2} x^{-1/2}) = \frac{-\sin \sqrt{x}}{4 \sqrt{\cos \sqrt{x}} \sqrt{x}}$$

(H.w) Find
$$y'$$
 if (i) $y = \sin^5 x$ (ii) $y = \cos(x^2)$ (iii) $y = e^{\sqrt{x}}$ (iv) $y = \sin(\sin(\sin x))$

Differentialing O, with respect to x, we get

Differentialing (1), with respect to x, we get

$$\begin{array}{lll}
2 & \text{Differentialing (1), with respect to x, we get} \\
4x^3 + 4y^3 \cdot y' = 0 \Rightarrow x^3 + y^3 \cdot y' = 0 - (2) \Rightarrow y^3y' = -x^3 \Rightarrow y' = -\frac{x^3}{y^3} - (3) \\
2 & \text{Differentialing (2) with respect to x, we get} \\
2 & \text{U} = 3y^2 \cdot y' \quad y' = y''
\end{array}$$

Differentialing @ with respect to x, we get

$$3x^2 + y^3 \cdot y'' + 3y^2 \left(-\frac{x^3}{y^3}\right)^2 = 0$$

$$3x^2+y^3$$
. $y'' + 3y^2\left(\frac{x^6}{y^6}\right) = 0 \Rightarrow 3x^2+y^3$. $y'' + \frac{3x^6}{y^4} = 0$

$$\Rightarrow y^{3}y'' = -3x^{2} - \frac{3x^{6}}{y^{4}} = -3x^{2}\left(1 + \frac{x^{4}}{y^{4}}\right) = -3x^{2}\left(\frac{y^{4} + x^{4}}{y^{4}}\right) = -3x^{2}\left(\frac{16}{y^{4}}\right)$$
(: by 0)

$$\therefore y' = \frac{-y \sin(xy)}{\cos y + x \sin(xy)}$$

$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1-\left(\frac{b+a\cos x}{a+b\cos x}\right)^2}}$$

$$f'(x) = \frac{-1}{\sqrt{1 - \left(\frac{b + a\cos x}{a + b\cos x}\right)^2}} \left[\frac{(a + b\cos x)(-a\sin x) - (b + a\cos x)(-b\sin x)}{(a + b\cos x)^2}\right]$$

$$\frac{1}{4}(x) = \frac{-(a+b\cos x)}{(a+b\cos x)^2 - (b+a\cos x)^2}$$

$$\frac{1'(x) = -(a+b\cos x)}{\sqrt{(a+b\cos x)^2 - (b+a\cos x)^2}} \left[\frac{-a^2\sin x - ab\sin x\cos x + b^2\sin x + ab\sin x\cos x}{(a+b\cos x)^2} \right]$$

$$= \frac{-1}{\sqrt{a^2+b^2\cos^2x+2ab\cos x-b^2-a^2\cos^2x-2ab\cos x}} \left(\frac{\sin x \cdot (b^2-a^2)}{a+b\cos x}\right)$$

$$=\frac{(a^2-b^2)\sin x}{(a+b\cos x)\sqrt{(a^2-b^2)-\cos^2 x(a^2-b^2)}}=\frac{(a^2-b^2)\sin x}{(a+b\cos x)\sqrt{(a^2-b^2)(1-\cos^2 x)}}$$

$$= \frac{(a^2-b^2)\sin x}{(a+b\cos x)\sqrt{(a^2-b^2)\sin^2 x}} \qquad (::\sin^2 x + \cos^2 x = 1)$$

$$= \frac{(a^2-b^2)\sin x}{(a+b\cos x)\sin x} = \frac{\sqrt{a^2-b^2}}{a+b\cos x}$$

(32) Find the derivative of f(x) = lanh -1 [tan x].

Sol: Given
$$f(x) = \tanh^{-1} \left[\tan \frac{x}{2} \right]$$
.

$$\frac{1}{1-\left(\tan\frac{\chi}{2}\right)^2}\left(\sec^2\frac{\chi}{2}\right)\left(\frac{1}{2}\right)$$

$$= \frac{1}{1 - \tan^2 \frac{x}{2}} \left(\sec^2 \frac{x}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{1 - \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}} \left(\sec^2 \frac{\frac{x}{2}}{2} \right) \left(\frac{\frac{1}{2}}{2} \right)$$

$$= \frac{\omega s^{2} x/2}{\omega s^{2} x/2 - sin^{2} x/2} \left(\frac{1}{2} sec^{2} x/2 \right) = \frac{\omega s^{2} x/2}{\omega s^{2} x/2 - sin^{2} x/2} \left(\frac{1}{2\omega s^{2} x/2} \right)$$

(A) Find the tangent line to the equation $x^3 + y^3 = 6xy$ at the point (3,3) & at what point the tangent line horizontal in the first quadrant.

Diff. O w.r.t. x, we get

$$3x^2 + 3y^2 - y' = 6(xy' + y - 1)$$

$$\Rightarrow 3x^{2} + 3y^{2}y' = 6xy' + 6y \Rightarrow 3y^{2}y' - 6xy' = 6y - 3x^{2}$$

$$\Rightarrow y'(3y^2-6x) = 6y-3x^2 \Rightarrow y' = \frac{6y-3x^2}{3y^2-6x}$$

$$(4')_{(3,2)} = \frac{6(3)-3(3)^2}{3(3)^2-b(3)} = \frac{18-27}{27-18} = \frac{-9}{9} = -1 = m$$
 (Slope)

Equation of tangent line is y-y,=m(x-x,)

$$y-3=-1(x-3) \Rightarrow y-3=-x+3$$

$$\Rightarrow x+y=3+3=6 \Rightarrow x+y=6$$

d (tanh-1x) = 1-x2

dy (toux) = sec x

(ii)
$$y' = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x} = 0$$

$$\Rightarrow 2y-x^2=0 \Rightarrow 2y=x^2 \Rightarrow y=\frac{x^2}{2}$$
 -2

Substituting @ in 10,

$$x^{3} + \left(\frac{x^{2}}{2}\right)^{3} = 6x\left(\frac{x^{2}}{2}\right) \Rightarrow x^{3} + \frac{x^{6}}{8} = \frac{6x^{3}}{2} = 3x^{3}$$

$$\Rightarrow \frac{x^{6}}{8} = 3x^{3} - x^{3} = 2x^{3} \Rightarrow \frac{x^{3}}{8} = 2 \Rightarrow x^{3} = 16 = 2^{4}$$

$$\Rightarrow x^{6} = 3x^{3} - x^{3} = 2x^{3} \Rightarrow x^{3} = 16 = 2^{4}$$

$$\Rightarrow x = 2^{13} - 3$$

$$5ubs \cdot 3 \text{ in } 3 \text{ in } 3, \quad y = \left(\frac{2^{4/3}}{2}\right)^2 = \frac{2^{8/3}}{2} = 2^{8/3} \cdot 2^{-1} = 2^{8/3} = 2^{7/3}$$

Hence the tangent line is horizontal at (24/3, 25/3).

Sol: Given y= (sinx) (sinx)

Diff. O w.r.t. x, we get

(35) Find an equation of the normal line to the curve y= 1/x at the point (1,1).

$$y = x^{1/4}$$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$
 $\frac{dy}{dx} = m = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$

Equation of the normal line is $y - y_1 = -\frac{1}{m}(x - x_1)$

$$y-1=\frac{-1}{V_4}(x-1) \Rightarrow y-1=-4(x-1)$$

$$\Rightarrow y-1=-4x+4 \Rightarrow 4x+y=4+1=5 \Rightarrow 4x+y=5$$

(1) [] x3+y3=16 find the value of
$$\frac{d^2y}{dx^2}$$
 at (2,2)

(3) If
$$e^{2\cos x} = 1 + \sin(xy)$$
, then find $\frac{1}{2}$.

(4) Find an equation of the tangent line to the curve $y \sin(2x) = x \cos(2y)$ at the point $(\frac{\pi}{2}, \frac{\pi}{4})$.

(36) Find the critical points of
$$y = 5x^3 - 6x$$
.

Sol: Given $y = 5x^3 - 6x$.

Critical points: $y' = 0$ (à) $\frac{dy}{dx} = 0$

$$y' = 15x^2 - b = 0 \Rightarrow 15x = 6 \Rightarrow x^2 = \frac{b}{15} = \frac{2}{5}$$

Definition: (Critical number)

A critical number of a function of is a number c in the domain of I such that either I'(c) = 0 or I'(c) does not exist.

(37) Find the critical points of
$$f(x) = x^{3/5}(4-x)$$
.
Sol: Given $f(x) = x^{3/5}(4-x) = 4x^{3/5} - xx^{3/5} = 4x^{3/5} - x^{3/5}$
Critical points: $f'(x) = 0$

$$\frac{1}{(x)} = 4\left(\frac{3}{5}\right)x^{\frac{3}{5}-1} - \frac{8}{5}x^{\frac{8}{5}-1} = 0$$

$$\Rightarrow \frac{12}{5}x^{-\frac{2}{5}} - \frac{8}{5}x^{\frac{3}{5}} = 0$$

$$\Rightarrow \frac{12}{5}x^{-\frac{2}{5}} = \frac{8}{5}x^{\frac{3}{5}} \Rightarrow \frac{12}{5}x^{\frac{5}{5}} = \frac{x^{\frac{3}{5}}}{x^{-\frac{2}{5}}} = x^{\frac{3}{5}} = x^{\frac{3}{5}}$$

$$\Rightarrow \frac{12}{5}x^{-\frac{2}{5}} = \frac{8}{5}x^{\frac{3}{5}} \Rightarrow \frac{12}{5}x^{\frac{5}{5}} = \frac{x^{\frac{3}{5}}}{x^{-\frac{2}{5}}} = x^{\frac{3}{5}}$$

$$\Rightarrow \frac{3}{2} = x$$

f'(x) doesn't exist when x=0.

Hence the critical points are 0 & 3/2.

First derivative test:

Suppose that c is a critical number of a continuous function of.

(i) If I' changes from + to - at c, then I has a local maximum at c.

(ii) If & changes from - to + at c, then I has a local numerous at c.

(iii) If I' does not change sign at c, then I has no local maximum or minimum at c.

Second derivative test:

Suppose d'" is continuous near c.

(i)24 4'(c)=0 & f"(c)>0, then I has a local minimum at c.

(ii) If f'(c)=0 & f"(c)<0, then of has a local maximum at c.

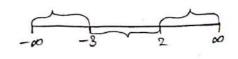
(A) If $f(x) = 2x^3 + 3x^2 - 36x$, find the intervals on which it is increasing or decreasing, the local maximum & local minimum values of f(x).

Also find the intervals of concavity & the inflection points.

501: (niver f(x)=2x3+3x2-36x $\Rightarrow 4'(x) = 6x^2 + 6x - 36$ Critical points: & (x)=0

\$'(x)=6x²+6x-36=0 ⇒ x²+x-6=0 \Rightarrow (x+3)(x-2)=0 $\Rightarrow \gamma = -3, 2$

Critical points are -3 & 2.



Interval	Sign of d'	Behavior of }	
-octx1-3	+	increasing	} local maximum
-3 <x<2< td=""><td>-</td><td>decreasing</td><td>16car roux,</td></x<2<>	-	decreasing	16car roux,
2 < 2 < 00	+	increasing	flocal minimum

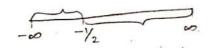
At x=-3, we get local maximum & at x=2, we get local minimum

$$f(2) = 2(2)^3 + 3(2)^2 - 36(2) = -44$$

Hence the local maximum value is &1 & the local minimum value is -44.

$$\frac{1}{4}(x) = 12x + 6 = 0 \Rightarrow 12x = -6 \Rightarrow x = \frac{-6}{12} = \frac{-1}{2}$$

$$\therefore x = \frac{-1}{2}$$



Interval	Sign of I"	Behaviour of 4
-00< x< -1/2	_	Concare down
-1/2 <x<0< td=""><td>+</td><td>Concare up</td></x<0<>	+	Concare up

Inflection points:

$$\frac{1}{1}(-\frac{1}{2}) = 2(-\frac{1}{2})^3 + 3(-\frac{1}{2})^2 - 36(-\frac{1}{2}) = \frac{37}{2}$$

Hence the inflection point is $\left(-\frac{1}{2}, \frac{37}{2}\right)$.

(39) For the function $f(x) = 2 + 2x^2 - x^4$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of concavity & the inflection points.

$$\frac{1}{2}(x) = 4x - 4x^3$$

$$\begin{cases} 1 \\ (x) = 0 \Rightarrow 4x - 4x^3 = 0 \Rightarrow 4x(1 - x^2) = 0 \Rightarrow x = 0, 1 - x^2 = 0 \end{cases}$$

=> x=0, x=1=> x= 1=+1

Hence the critical points are -1,0 x1.



Interval	Sign of f'	Behaviour of 4	
-00 < x < -1	+	increasing	Glocal maximum
ーノベメ人の	-	decreasing	} local nanimum
0イメイ 1	+	increasing	13.
1< x < 00	_	decreasing	} local maximum

At n= ±1, we get local maximum value.

: Local maximum value is 3.

At x=0, we get local minimum value.

$$f(0) = 2 + 2(0)^2 - (0)^4 = 2$$

: Local minimum value is 2.

$$f''(x) = 4 - 12x$$

$$f''(x) = 0 \Rightarrow 4 - 12x^{2} = 0 \Rightarrow 12x^{2} = 4 \Rightarrow x^{2} = \frac{4}{12} = \frac{1}{3} \Rightarrow x = \frac{1}{3}$$

$$\therefore x = \pm \sqrt{\frac{1}{3}} \Rightarrow x = \sqrt{\frac{1$$

Interval	Sign of f"	Behaviour of f
-00< x < -1	_	Concave down
-13 < x < 1/3	+	Concave up
1/3 <x 00<="" <="" td=""><td>-</td><td>Concave down</td></x>	-	Concave down

$$-\frac{1}{\sqrt{3}} = -0.6$$

$$\frac{1}{\sqrt{3}} = 0.6$$

Inflection points:

$$\frac{1}{4(\frac{1}{\sqrt{3}})} = 2 + 2(\frac{1}{\sqrt{3}})^2 - (\frac{1}{\sqrt{3}})^{\frac{1}{3}} = 2 + \frac{2}{3} - \frac{1}{9} = \frac{23}{9}$$

$$4\left(\frac{-1}{\sqrt{3}}\right) = 2 + 2\left(\frac{-1}{\sqrt{3}}\right)^2 - \left(\frac{-1}{\sqrt{3}}\right)^4 = 2 + \frac{2}{3} - \frac{1}{9} = \frac{23}{9}$$

Hence the inflection points are $\left(-\frac{1}{\sqrt{3}}, \frac{23}{9}\right) & \left(\frac{1}{\sqrt{3}}, \frac{23}{9}\right)$.

Find the local maximum & minimum values of f(x) = \sqrt{x} - \frac{1}{2}x using both the first & second derivative tests.

Sol: Given f(x)= Tx - 4/x = x/2-x/4 $\frac{1}{4}(x) = \frac{1}{2}x^{\frac{1}{2}-1} - \frac{1}{4}x^{\frac{1}{4}-1} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{4}x^{-\frac{3}{4}}$

Critical points:

$$\frac{1}{4}(x) = 0 \Rightarrow \frac{1}{2}x^{-\frac{1}{2}} = 0 \Rightarrow \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{4}x^{-\frac{3}{4}}$$

$$\Rightarrow \frac{1}{2} = \frac{x^{-\frac{3}{4}}}{x^{-\frac{1}{2}}} \Rightarrow 2 = x^{-\frac{3}{4}} \cdot x^{\frac{1}{2}} = \frac{1}{4}x^{-\frac{3}{4}}$$

$$\Rightarrow 2 = x^{-\frac{3}{4}} \Rightarrow 2 = x^{-\frac{3}{4}} \cdot x^{\frac{1}{2}} = x^{-\frac{3}{4}} = x^{\frac{1}{4}}$$

$$\Rightarrow 2 = x^{-\frac{1}{4}} \Rightarrow \frac{2}{x^{-\frac{1}{4}}} = 1 \Rightarrow 2x^{\frac{1}{4}} = 1 \Rightarrow x^{\frac{1}{4}} = \frac{1}{16}$$

$$\Rightarrow x = \left(\frac{1}{2}\right)^{\frac{1}{4}} = \frac{1}{16}$$

At x=0, &'(x) doesn't exist.

Hence the critical points are 0 4 16.

1 = 0.06

First derivative test: Interval Sign Interval Sign of t' Behaviour of t -DLXCO (not defined) (not defined) 0 < x < 1/6 decreasing } local minimum
increasing

At x= 1/6, we get local ninimum value.

Hence the local ninimum value is -1/4.

Second derivative test:

$$\frac{1}{4}''(x) = \frac{1}{2} \left(-\frac{1}{2} \right) x^{-\frac{1}{2} - 1} - \frac{1}{4} \left(-\frac{3}{4} \right) x^{-\frac{3}{4} - 1} = -\frac{1}{4} x^{-\frac{3}{2} + \frac{3}{16}} x^{-\frac{7}{4}}$$

$$\therefore \frac{1}{16} \left(\frac{1}{16} \right) = -16 + 24 = 8 > 0 \Rightarrow |oca| \text{ minimum at } x = \frac{1}{16}.$$

Hence the local minimum value is -1/4.

For the function $f(x) = x^3 - 3x^2 + 1$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of concavity & the inflection points.

2 For the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$, find the intervals of increase or decrease, local maximum & minimum values, the intervals of concavity & the inflection points.

$$\frac{50!}{x \to \infty} \frac{\lim_{x \to \infty} \frac{xy + 5}{x^2 + 2y^2}}{\lim_{x \to \infty} \frac{2}{x^2 + 2y^2}} = \lim_{x \to \infty} \left[\frac{\lim_{x \to \infty} \frac{xy + 5}{x^2 + 2y^2}}{\lim_{x \to \infty} \frac{2x + 5}{x^2 + 2y^2}} \right]$$

$$= \lim_{x \to \infty} \left[\frac{x(2) + 5}{x^2 + 2(2)^2} \right] = \lim_{x \to \infty} \left[\frac{2x + 5}{x^2 + 8} \right]$$

$$= \lim_{x \to \infty} \left[\frac{x(2 + 5/x)}{x^2(1 + 8/x^2)} \right] = \lim_{x \to \infty} \left[\frac{2 + 5/x}{x(1 + 8/x^2)} \right]$$

$$= \frac{2 + 5/\infty}{\omega(1 + 8/\omega)} = \frac{2 + 0}{\omega(1 + 0)} = \frac{2}{\omega} = 0$$

2 if
$$f(x,y) = \log \sqrt{x^2 + y^2}$$
, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

501: Given
$$f(x,y) = \log \sqrt{x^2 + y^2} = \log (x^2 + y^2)^{1/2} = \frac{1}{2} \log (x^2 + y^2)$$
.

$$\Rightarrow f(x,y) = \frac{1}{2} \log(x^2 + y^2)$$

$$\frac{\partial \frac{1}{2}}{\partial x} = \frac{1}{2} \frac{1}{x^2 + y^2} \cdot 2x = \frac{x}{x^2 + y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{(x^2 + y^2) \cdot 1 - x(2x)}{(x^2 + y^2)^2} = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial^{2} t}{\partial x^{2}} = \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}} - 0$$

$$\frac{\partial f}{\partial y} = \frac{1}{2} \frac{1}{\chi^2 + y^2} \cdot 2y = \frac{y}{\chi^2 + y^2}$$

$$\frac{\partial^{2} f}{\partial y^{2}} = \frac{(\chi^{2} + y^{2}) \cdot 1 - y(2y)}{(\chi^{2} + y^{2})^{2}} = \frac{\chi^{2} + y^{2} - 2y^{2}}{(\chi^{2} + y^{2})^{2}}$$

$$\frac{3^{2}1}{3y^{2}} = \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} - 2$$

$$0 + 2 \Rightarrow \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2 + x^2 - y^2}{(x^2 + y^2)^2} = 0$$

$$u = x \qquad v = x^{2} + y^{2}$$

$$u' = 1 \qquad v' = 2x$$

$$d(u) = vu' - uv'$$

$$v^{2}$$

$$u = y$$
 $v = x^2 + y^2$
 $u' = 1$ $v' = 2y$

$$= \frac{y^2 - x^2 + x^2 - y^2}{(x^2 + y^2)^2} = 0$$

We know that
$$r = \sqrt{x^2 + y^2} = \theta = \tan^{-1}(\frac{y}{x})$$

(iii)
$$\frac{\partial r}{\partial x} = \frac{1}{2} \left(x^2 + y^2 \right)^{1/2 - 1} \cdot 2x = x \left(x^2 + y^2 \right)^{-1/2} = \frac{x}{\left(x^2 + y^2 \right)^{1/2}} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$(iv) \frac{\partial \Phi}{\partial y} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{1}{x} = \frac{1}{\frac{x^2 + y^2}{x^2}} \cdot \frac{1}{x}$$
$$= \frac{x}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{1}{x} = \frac{x}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{1}{x}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$= \frac{\chi^2}{\chi^2 + \chi^2} \cdot \frac{1}{\chi} = \frac{\chi}{\chi^2 + \chi^2}$$

A) Find du in terms of t, if
$$u=x^3+y^3$$
 where $x=at^2$, $y=2at$.

$$\therefore u = (at^2)^3 + (2at)^3 = a^3t^6 + 8a^3t^3$$

$$\frac{du}{dt} = a^3 6t^5 + 8a^3 3t^2 = 6a^3t^5 + 24a^3t^2 = 6a^3(t^5 + 4t^2) = 6a^3t^2(t^3 + 4)$$

Euler's theorem on homogeneous function:

If u is a homogeneous function of degree n in x & y, then x du + y du = nu.

The If
$$u=(x-y)(y-z)(z-x)$$
, then show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.

Sol: Given
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$

$$\Rightarrow \tan u = \frac{x^3 + y^3}{x - y} = \frac{1}{x}(x, y)$$

$$\frac{\int (1+x,1+y) = \frac{(1+x)^3 + (1+y)^3}{1+x-1+y} = \frac{1^3x^3 + 1^3y^3}{1+x-1+y} = \frac{1^3(x^3+y^3)}{1+(x-y)} = \frac{1^2(x^3+y^3)}{1+(x-y)} = \frac{1^2(x^3+y^3)}{1+(x-y$$

if is a homogeneous function of degree 2 in x & y.

Here J=tanu

$$\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u \times \frac{1}{\sec^2 u} = 2 \frac{\sin u}{\cos u} \times \cos^2 u = 2 \sin u \cos u = \sin 2u$$

1) If
$$u = sin^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$$
, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$.

② If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x+y}}\right)$$
, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}$ when

(b) Verify the Euler's theorem for the function u=x2+y2+2xy.

$$\frac{LHS}{\partial x} = 2x + 2y , \frac{\partial u}{\partial y} = 2y + 2x$$

$$\frac{\partial y}{\partial x} = 2x^{2} + y \frac{\partial y}{\partial y} = x(2x + 2y) + y(2y + 2x) = 2x^{2} + 2xy + 2y^{2} + 2xy$$

$$= 2x^{2} + 2y^{2} + 4xy$$

$$2. \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2x^2 + 2y^2 + 4xy - 0$$

.. u is a homogeneous function of degree 2 in x & y.

Definition:

A function f(x,y) is said to be a homogeneous function of degree n in x x y, if f(tx, ty)=t" f(x,y) for any positive t.

$$\frac{50!}{\sqrt{x^2+y^2+z^2}} \Rightarrow \sin u = \frac{x+2y+3z}{\sqrt{x^2+y^2+z^2}} \Rightarrow \sin u = \frac{x+2y+3z}{\sqrt{x^2+y^2+z^2}} = \frac{1}{2}(x,y,z)$$

$$\frac{1}{\sqrt{(\pm x)^{8}+(\pm y)^{8}+z^{8}}} = \frac{\pm (x+2y+3z)}{\sqrt{(\pm x)^{8}+(\pm y)^{8}+(\pm z)^{8}}} = \frac{\pm (x+2y+3z)}{\pm \sqrt{(\pm x)^{8}+(\pm y)^{8}+z^{8}}} = \pm \frac{-3}{\sqrt{x^{8}+y^{8}+z^{8}}}$$

:] is a homogeneous function of degree (-3) in x, y & z.

Here
$$\frac{1}{4} = \sin u$$
 , $\frac{\partial f}{\partial x} = \cos u \frac{\partial u}{\partial y}$, $\frac{\partial f}{\partial z} = \cos u \frac{\partial u}{\partial z} - 2$

Subal. @ in O,

$$\Rightarrow \times \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = \frac{-3 \sin u}{\cos u} = -3 \tan u$$

(i)
$$x^{\frac{1}{2}} + y^{\frac{1}{2}} = x + y^{\frac{3}{2}} = x$$

(ii) $x^{\frac{1}{2}} + y^{\frac{3}{2}} = x + y^{\frac{3}{2$

Scanned with CamScanner

$$\frac{\partial^{2}u}{\partial x \partial y} + y \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial u}{\partial y} \cdot 1 = \frac{1}{2} \sec^{2}u \frac{\partial u}{\partial y}$$

$$\frac{\partial^{2}u}{\partial x \partial y} + y \frac{\partial^{2}u}{\partial y^{2}} = \frac{1}{2} \sec^{2}u \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} \left(\frac{1}{2} \sec^{2}u - 1 \right) - 9$$

$$\frac{\partial^{2}u}{\partial x^{2}} + \chi y \frac{\partial^{2}u}{\partial x^{2}} + \chi y \frac{\partial^{2}u}{\partial x \partial y} + \chi y \frac{\partial^{2}u}{\partial x \partial y} + y^{2} \frac{\partial^{2}u}{\partial y^{2}} = \chi \frac{\partial u}{\partial x} \left(\frac{1}{2} \sec^{2}u - 1 \right) + y \frac{\partial u}{\partial y} \left(\frac{1}{2} \sec^{2}u - 1 \right)$$

$$\frac{\chi^{2}}{2} \frac{\partial^{2}u}{\partial x^{2}} + 2\chi y \frac{\partial^{2}u}{\partial x \partial y} + y^{2} \frac{\partial^{2}u}{\partial y^{2}} = \left(\frac{1}{2} \sec^{2}u - 1 \right) \left(\chi \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right)$$

$$= \left(\frac{1}{2} \sec^{2}u - 1 \right) \frac{1}{2} \tan u = \left(\frac{1 - 2\cos^{2}u}{2\cos^{2}u} \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} - 1 \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} - 1 \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} - 1 \right) \frac{1}{2} \frac{\sin u}{\cos u}$$

$$= -\left(\frac{2\cos^{2}u}{2\cos^{2}u} - 1 \right) \frac{1}{2} \frac{\cos^{2}u}{\cos u} - 1 \right) = \cos 2u$$

(ii)
$$2^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$
.

Jacobians:

() If x=roso & y=rsino, then find 3(x,y).

Sol: Given x=ruso, y=rsino

$$\frac{\partial x}{\partial x} = \cos \theta$$
 $\frac{\partial y}{\partial x} = \sin \theta$

$$\frac{\partial x}{\partial \theta} = -r \sin \theta$$

$$\frac{\partial x}{\partial \theta} = -\tau \sin \theta$$

$$\frac{\partial x}{\partial \theta} = \left| \frac{\partial x}{\partial x} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \right| = \left| \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial$$

$$= \gamma(\omega s^2 + sin^2 \theta) = \gamma \left(: \omega s^2 \theta + sin^2 \theta = 1 \right)$$

0

12 If x=uv & y= u then find a(x,y).

501: Given x= uv , y= 4 = uv-1

$$\frac{\partial x}{\partial u} = 4$$
 $\frac{\partial y}{\partial u} = \frac{1}{1}$

$$\frac{\partial x}{\partial x} = u \qquad \frac{\partial y}{\partial x} = u(-1)x^{-1-1} = -ux^{-2} = -\frac{u}{x^2}$$

$$\frac{\partial(\alpha, \lambda)}{\partial x} = \begin{vmatrix} \frac{\partial \alpha}{\partial x} & \frac{\partial \lambda}{\partial x} \\ \frac{\partial \alpha}{\partial x} & \frac{\partial \lambda}{\partial x} \end{vmatrix} = \begin{vmatrix} \lambda & -\alpha \\ \lambda & -\alpha \\ \lambda & -\alpha \end{vmatrix} = \lambda(-\frac{\lambda_2}{\lambda_2}) - \alpha(\frac{\lambda}{\lambda})$$

$$= \frac{-u}{v} - \frac{u}{v} = \frac{-2u}{v}$$

A) If x=u^2-v^2, y=2uv find the Jacobian of x,y with respect to u&v.

[Hint: 2(x,y)]

(13) State the properties of Jocobians.

501: 1) If us & are the functions of x & y, then

$$\frac{g(x'A)}{g(x'A)} \times \frac{g(x'A)}{g(x'A)} = 1.$$

2 If u, v are functions of x, y & x, y are functions of r, s then $\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(x,s)} = \frac{\partial(u,v)}{\partial(x,s)}$

3 If u,v,w are functionally dependent functions of three independent variables x,y,z then $\frac{\partial(u,v,\omega)}{\partial(x,y,z)} = 0$.

(4) If
$$u=2xy$$
, $v=x^2-y^2 + x = r\cos\theta$, $y=r\sin\theta$. Evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$,

 $\frac{\partial o!}{\partial u} = 2y$ $\frac{\partial v}{\partial x} = 2x$ $\frac{\partial x}{\partial \theta} = r\sin\theta$
 $\frac{\partial u}{\partial x} = 2y$ $\frac{\partial v}{\partial x} = -2y$ $\frac{\partial x}{\partial \theta} = r\sin\theta$ $\frac{\partial y}{\partial \theta} = r\cos\theta$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial y} = -2y$ $\frac{\partial x}{\partial \theta} = r\sin\theta$ $\frac{\partial y}{\partial \theta} = r\cos\theta$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial y} = -2y$ $\frac{\partial x}{\partial \theta} = r\sin\theta$ $\frac{\partial y}{\partial \theta} = r\cos\theta$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial y} = -2y$ $\frac{\partial x}{\partial \theta} = r\sin\theta$ $\frac{\partial x}{\partial \theta} = r\cos\theta$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial x} = -2y$ $\frac{\partial x}{\partial \theta} = r\sin\theta$ $\frac{\partial x}{\partial \theta} = r\cos\theta$
 $\frac{\partial u}{\partial x} = 2x$ $\frac{\partial v}{\partial x} = -2y$ $\frac{\partial v}{\partial \theta} = r\sin\theta$ $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial x} = \frac{\partial$

(15) Show that the functions u=x+y-z, v=x-y+z, w=x+y+z-2yz
are dependent. Find the relation between them.

$$\frac{\partial u}{\partial x} = 1 \qquad \frac{\partial v}{\partial x} = 1 \qquad \frac{\partial w}{\partial x} = 2x$$

$$\frac{\partial u}{\partial y} = 1 \qquad \frac{\partial v}{\partial y} = -1 \qquad \frac{\partial w}{\partial z} = 2y - 2z$$

$$\frac{\partial u}{\partial z} = -1 \qquad \frac{\partial v}{\partial z} = 1 \qquad \frac{\partial w}{\partial z} = 2z - 2y$$

$$\frac{\partial u}{\partial z} = -1$$

$$\frac{\partial u}{\partial z} = -1$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z}$$

$$\frac{\partial u}{\partial x} = -1$$

$$\frac{\partial u}{\partial x}$$

$$= 1 \left(-1(2z - 2y) - 1(2y - 2z) \right) - 1\left(2z - 2y - 2x\right) - 1\left(2y - 2z + 2x\right)$$

$$= -2z + 2y - 2y + 2z - 2z + 2y + 2x - 2y + 2z - 2x$$

:. u, v & w are functionally dependent.

$$u+v=x+y-z+x-y+z=2x \Rightarrow u+v=2x = 0$$

$$u-v=x+y-z-(x-y+z)=x+y-z-x+y-z=2y-2z = 0$$

$$\Rightarrow u-v=2y-2z = 0$$

 $(u+v)^{2} + (u-v)^{2} = (2x)^{2} + (2y-2z)^{2} = 4x^{2} + 4(y-z)^{2}$ = 4x+4 (y2+z2-24z) = 4(x2+y2+z2-24z) = 4w (:Given)

=> u++++2u+++++-2u+ = 4w => 2 u + 2 v = 4 w => u + v = 2 w

(Find the Jacobian of y1, y2, y3 with respect to x1, x2, x3, if $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_2}$.

@ Find the Jacobian $\frac{\partial(x,y,z)}{\partial(r,\phi,\phi)}$ of the transformation $x=rsin\phi\cos\phi$,

3) Prove u=x+y+z, v=xy+yz+zx, w=x2+y2+z2 are functionally dependent. Find the relationship between them.

(b) For the given function $z = tan^{-1} \left(\frac{x}{y} \right) - (xy)$, verify whether the statement $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, is correct or not. $\frac{\partial}{\partial x} \left(\frac{u}{y} \right) = \frac{yu' - uy'}{y^2}$ $\frac{\partial}{\partial x} \left(\frac{u}{y} \right) = \frac{yu' - uy'}{y^2}$ $\frac{\partial}{\partial x} \left(\frac{u}{y} \right) = \frac{1}{1+x^2}$ Sol: Griven $z = tan^{-1} \left(\frac{x}{x} \right) - (xy)$ Sol: Given z=tan-1 (xy)-(xy)

 $\frac{\text{LH5}}{\text{LH5}} \frac{\partial z}{\partial y} = \frac{1}{1 + \left(\frac{x}{4}\right)^2} \times \left(\frac{-1}{y^2}\right) - x = \frac{y^2}{y^2 + x^2} \cdot \frac{-x}{y^2} - x = \frac{-x}{x^2 + y^2} - x$

 $\frac{\partial^2 z}{\partial x \partial y} = \frac{(x^2 + y^2)(-1) - (-x)2x}{(x^2 + y^2)^2} - 1 = \frac{-x^2 - y^2 + 2x^2}{(x^2 + y^2)^2} - 1 = \frac{x^2 - y^2}{(x^2 + y^2)^2} -$

 $\frac{\text{RHS}}{2x} \frac{3z}{3x} = \frac{1}{1 + \left(\frac{x}{4}\right)^2} \cdot \frac{1}{3} - 3 = \frac{3^2}{3^2 + x^2} \cdot \frac{1}{3} - 3 = \frac{3}{x^2 + y^2} - 3$

 $\frac{\partial^2 z}{\partial y \partial x} = \frac{\left(x^2 + y^2\right) \cdot 1 - y\left(2y\right)}{\left(x^2 + y^2\right)^2} - 1 = \frac{x^2 + y^2 - 2y^2}{\left(x^2 + y^2\right)^2} - 1 = \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} - 1 = \frac{2}{\left(x^2 + y^$

From 0×2 , $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$

$$\frac{\partial u}{\partial x} = (x^{2} + y^{2} + z^{2})^{-1/2} \text{ then } \text{ find the value of } \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}},$$

$$\frac{\partial u}{\partial x} = -\frac{1}{2} (x^{2} + y^{2} + z^{2})^{-1/2}.$$

$$\frac{\partial u}{\partial x} = -\frac{1}{2} (x^{2} + y^{2} + z^{2})^{-1/2}.$$

$$\frac{\partial^{2} u}{\partial x^{2}} = -\left[x \left(-\frac{3}{2} \right) \left(x^{2} + y^{2} + z^{2} \right)^{-3/2} - \left(2x \right) + \left(x^{2} + y^{2} + z^{2} \right)^{-3/2}.$$

$$= 3x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$(x^{2} + y^{2} + z^{2})^{-3/2}.$$

$$\frac{\partial^{2} u}{\partial y^{2}} = 3y^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$(x^{2} + y^{2} + z^{2})^{-3/2}.$$

$$\frac{\partial^{2} u}{\partial y^{2}} = 3x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$(x^{2} + y^{2} + z^{2})^{-3/2}.$$

$$\frac{\partial^{2} u}{\partial z^{2}} = 3x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$(x^{2} + y^{2} + z^{2})^{-3/2}.$$

$$\frac{\partial^{2} u}{\partial z^{2}} = 3x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$(x^{2} + y^{2} + z^{2})^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

$$= 3 \left(x^{2} + y^{2} + z^{2} \right)^{-5/2}.$$

(B) If u= f(\frac{y-x}{xy}, \frac{z-x}{xz}), find x2\frac{\partial u}{\partial x} + y2\frac{\partial u}{\partial y} + z2\frac{\partial u}{\partial z}. Sol: Given u= \(\frac{x-x}{xy}, \frac{z-x}{xz}\)

Let $a = \frac{y-x}{xy}$, $b = \frac{z-x}{xz}$ u=f(a,b)

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial x}$$
$$= \frac{\partial u}{\partial a} \cdot \frac{-1}{x^2} + \frac{\partial u}{\partial b} \cdot \frac{-1}{x^2}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{x^2} \frac{\partial u}{\partial a} - \frac{1}{x^2} \frac{\partial u}{\partial b}$$

$$\frac{\partial y}{\partial u} = \frac{\partial u}{\partial a} \cdot \frac{\partial y}{\partial a} = \frac{\partial u}{\partial a} \cdot \frac{1}{x} \left[\frac{y(1) - (y - x) \cdot 1}{y^2} \right]$$

$$\frac{\partial a}{\partial x} = \frac{1}{y} \left[\frac{x(-1) - (y - x) \cdot 1}{x^2} \right]$$

$$= \frac{1}{y} \left[-\frac{x - y + x}{x^2} \right] = \frac{1}{y} \left(-\frac{y}{x^2} \right)$$

$$\frac{\partial a}{\partial x} = \frac{-1}{x^2}$$

$$\frac{\partial b}{\partial x} = \frac{1}{z} \left[\frac{x(-1) - (z - x) \cdot 1}{x^2} \right]$$

$$= \frac{1}{z} \left[-\frac{x - z + x}{x^2} \right] = \frac{-1}{x^2}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial a} \cdot \frac{1}{x} \left[\frac{x - y + x}{y^2} \right] = \frac{1}{y^2} \frac{\partial u}{\partial a}$$

$$\frac{\partial u}{\partial z} = \frac{\partial u}{\partial b} \cdot \frac{\partial b}{\partial z} = \frac{\partial u}{\partial b} \cdot \frac{1}{x} \left[\frac{z(1) - (z - x) \cdot 1}{z^2} \right]$$

$$= \frac{\partial u}{\partial b} \cdot \frac{1}{x} \left[\frac{z - z + x}{z^2} \right] = \frac{1}{z^2} \frac{\partial u}{\partial b}$$

$$\therefore x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = -\frac{\partial u}{\partial a} - \frac{\partial u}{\partial b} + \frac{\partial u}{\partial a} + \frac{\partial u}{\partial b} = 0$$

(R) If u=f(2x-3y, 3y-4z, 4z-2x), then find \(\frac{1}{2}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z}.

Sol: Given
$$u = f(2x-3y, 3y-4z, 4z-2x)$$

Let $a = 2x-3y$, $b = 3y-4z$, $c = 4z-2x$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial a} \cdot \frac{\partial a}{\partial x} + \frac{\partial u}{\partial c} \cdot \frac{\partial c}{\partial x} = 2 \frac{\partial u}{\partial a} - 2 \frac{\partial u}{\partial c}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial a} \cdot \frac{\partial g}{\partial y} + \frac{\partial u}{\partial b} \cdot \frac{\partial g}{\partial y} = -3\frac{\partial u}{\partial a} + 3\frac{\partial u}{\partial b}$$

$$\frac{\partial u}{\partial z} = \frac{\partial u}{\partial b} \cdot \frac{\partial z}{\partial b} + \frac{\partial u}{\partial c} \cdot \frac{\partial z}{\partial c} = -4 \frac{\partial b}{\partial u} + 4 \frac{\partial u}{\partial c}$$

$$\frac{\partial a}{\partial x} = 2, \frac{\partial c}{\partial x} = -2$$

$$\frac{\partial a}{\partial y} = -3, \frac{\partial b}{\partial y} = 3$$

$$\frac{\partial b}{\partial z} = -4, \frac{\partial c}{\partial z} = 4$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = \frac{\partial u}{\partial a} - \frac{\partial u}{\partial c} - \frac{\partial u}{\partial a} + \frac{\partial u}{\partial b} - \frac{\partial u}{\partial b} + \frac{\partial u}{\partial c} = 0$$

(A) Find dy, if $x^y + y^x = c$, where c is a constant. $\int \frac{d}{dx} (a^x) = a^x \log a$

$$\frac{\partial x}{\partial y} = -\frac{\partial y}{\partial x} = -\left(\frac{x^{3} \log x + xy^{3}}{y^{3} \log x + xy^{3}}\right)$$

(Fix) If u= f(y-z, z-x, x-y), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

(2) If
$$g(x,y) = \psi(u,v)$$
 where $u = x^2 - y^2$ & $v = 2xy$, then prove that
$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = \psi(x^2 + y^2) \left[\frac{\partial^2 \psi}{\partial u^2} + \frac{\partial^2 \psi}{\partial v^2} \right].$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = \frac{\partial v}{\partial$$

$$\frac{\partial u}{\partial y} = -2y$$
 $\frac{\partial v}{\partial y} = 2x$

$$\frac{\partial x}{\partial \theta} = \frac{\partial n}{\partial \phi} \cdot \frac{\partial x}{\partial n} + \frac{\partial x}{\partial \phi} \cdot \frac{\partial x}{\partial r}$$

$$\frac{\partial g}{\partial x} = 2x \frac{\partial u}{\partial u} + 2y \frac{\partial v}{\partial v}$$

$$\frac{9^{x}}{9} = 5x \frac{9^{n}}{9} + 5A \frac{9^{k}}{9}$$

$$\frac{\partial \lambda}{\partial \theta} = \frac{\partial n}{\partial \phi} \cdot \frac{\partial \lambda}{\partial n} + \frac{\partial \lambda}{\partial \phi} \cdot \frac{\partial \lambda}{\partial \gamma}$$

$$\frac{\partial g}{\partial y} = -2y \frac{\partial \psi}{\partial u} + 2x \frac{\partial \psi}{\partial v}$$

$$\frac{\partial \lambda}{\partial x} = -5\lambda \frac{\partial x}{\partial y} + 5x \frac{\partial x}{\partial y}$$

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial x} \right) = \left(5x \frac{\partial n}{\partial x} + 5A \frac{\partial x}{\partial x} \right) \left(5x \frac{\partial n}{\partial x} + 5A \frac{\partial x}{\partial x} \right)$$

$$\frac{\partial^2 q}{\partial x^2} = 4x^2 \frac{\partial^2 \psi}{\partial u^2} + 4xy \frac{\partial^2 \psi}{\partial u \partial v} + 4xy \frac{\partial^2 \psi}{\partial v \partial u} + 4y^2 \frac{\partial^2 \psi}{\partial v^2} - 0$$

$$\frac{\partial^2 g}{\partial y^2} = \frac{\partial g}{\partial y} \left(\frac{\partial g}{\partial y} \right) = \left(-2y \frac{\partial u}{\partial u} + 2x \frac{\partial v}{\partial v} \right) \left(-2y \frac{\partial u}{\partial u} + 2x \frac{\partial v}{\partial v} \right)$$

$$\frac{\partial^2 g}{\partial y^2} = 4y^2 \frac{\partial^2 \psi}{\partial u^2} - 4xy \frac{\partial^2 \psi}{\partial u \partial v} - 4xy \frac{\partial^2 \psi}{\partial v \partial u} + 4x^2 \frac{\partial^2 \psi}{\partial v^2} - 2$$

$$\begin{array}{c}
\frac{\partial y^{2}}{\partial y^{2}} & \frac{\partial u^{2}}{\partial x^{2}} + \frac{\partial^{2} y}{\partial y^{2}} = 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4y^{2} \frac{\partial^{2} y}{\partial x^{2}} + 4y^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} + 4x^{2} \frac{\partial^{2} y}{\partial u^{2}} \\
&= \frac{\partial^{2} y}{\partial u^{2}} \left(4x^{2} + 4y^{2} \right) + \frac{\partial^{2} y}{\partial x^{2}} \left(4x^{2} + 4y^{2} \right) \\
&= \frac{\partial^{2} y}{\partial u^{2}} \left(4x^{2} + 4y^{2} \right) + \frac{\partial^{2} y}{\partial x^{2}} \left(4x^{2} + 4y^{2} \right)
\end{array}$$

$$= \left(4x^{2} + 4y^{2}\right)\left(\frac{\partial^{2}y}{\partial u^{2}} + \frac{\partial^{2}y}{\partial y^{2}}\right)$$

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 y}{\partial u^2} + \frac{\partial^2 y}{\partial y^2} \right)$$

(22) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}$.

$$\frac{\partial u}{\partial x} = \frac{1}{x^3 + y^3 + z^3 - 3xyz} \left(3x^2 - 3yz \right) = \frac{3(x^2 - yz)}{x^3 + y^3 + z^3 - 3xyz}$$

Similarly,
$$\frac{\partial u}{\partial y} = \frac{3}{x}$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$$

$$\frac{\partial u}{\partial y} = \frac{3(y^2 - xz)}{x^3 + y^3 + z^3 - 3xyz} & \frac{\partial u}{\partial z} = \frac{3(z^2 - xy)}{x^3 + y^3 + z^3 - 3xyz}$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3(x^2 - yz + y^2 - xz + z^2 - xy)}{x^3 + y^3 + z^3 - 3xyz}$$

$$= 3(x^{2}+y^{2}+z^{2}-xy-yz-xz)$$

$$= \frac{3}{(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)} = \frac{3}{x+y+z}$$

$$\Rightarrow \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right) u = \frac{3}{x + y + z} = 3\left(x + y + z\right)^{-1}$$

$$\frac{\partial}{\partial x} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = 3 \left(-1 \right) \left(x + y + z \right)^{-1} \cdot 1 = \frac{-3}{\left(x + y + z \right)^2} - 1$$

Similarly,

$$\frac{\partial}{\partial y} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = \frac{-3}{(x+y+z)^2} - 2$$

$$\frac{\partial}{\partial z} \left(\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) u \right) = \frac{-3}{(x + y + z)^2} - 3$$

$$\Rightarrow \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$

(1) If $z = \frac{1}{2}(x,y)$ where $x = r\cos\theta + y = r\sin\theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

(2) If z is a function of x & y & u & t are other two variables, such that u=lx+my, t=ly-mx. Show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \left(\left(\left(\frac{1}{2} + m^2 \right) \right) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} \right).$$

Taylor's series

(P(23) Expand x2y2+2x2y+3xy2 in powers of (x+2) & (y-1) using Taylors series upto third degree terms.

501:	Function	x = -2, $y = 1$ $(-2,1)$
40	x,y)=xy+2xy+3xy	1 2 2 (2 ()+3(-2)(1)=4+8-6=6
	= 2xy2+4xy+3y2	1 2 (1)+4(-2)(1)+3(1)7
	= 2x2y+2x2+6xy	$\frac{4x = 2(-2)^2(1) + 2(-2)^2 + 6(-2)(1) = 8 + 8 - 12 = 4}{4y = 2(-2)^2(1) + 2(-2)^2 + 6(-2)(1) = 8 + 8 - 12 = 4}$
1/2	x = 2y2+4y	$\frac{1}{4xx} = 2(1)^{2} + 4(1) = 2 + 4 = 6$ $\frac{1}{4xx} = 4(-2)(1) + 4(-2) + 6(1) = -8 - 8 + 6 = -10$
f2	y=42y+42+6y	$\frac{1}{4}xy = 4(-2)(1) + 4(-2) + 6(-2) = 8 - 12 = -4$ $\frac{1}{4}xy = 2(-2)^{2} + 6(-2) = 8 - 12 = -4$
1	$y = 2x^2 + bx$	
	(XX = 0	$f_{XXX} = 0$
4,	(xy = 4y+4	$f_{xxy} = 4(1) + 4 = 8$ $f_{xxy} = 4(-2) + 6 = -8 + 6 = -2$
1	cyy = 4x+6	
J.	188 0	+444 = 0

By Taylor's theorem,

By Taylor's Theorem,

$$\frac{1}{2}(x,y) = \frac{1}{2}(a,b) + \frac{1}{1}\left[h^{\frac{1}{2}}(a,b) + k^{\frac{1}{2}}y(a,b)\right] \\
+ \frac{1}{2!}\left[h^{\frac{1}{2}}\int_{xx}(a,b) + 2hk^{\frac{1}{2}}xy(a,b) + k^{\frac{1}{2}}yy(a,b)\right] \\
+ \frac{1}{3!}\left[h^{\frac{3}{2}}\int_{xxx}(a,b) + 3h^{\frac{1}{2}}k^{\frac{1}{2}}xyy(a,b) + 3hk^{\frac{1}{2}}\int_{xyy}(a,b) + k^{\frac{3}{2}}yyy(a,b)\right]$$

Here a=-2, b=1; h=x-a=x-(-2)=x+2, k=y-b=y-1

$$\frac{1}{2!} \left[(x+2)^{2} (-1) + (y-1)(4) \right] \\
+ \frac{1}{2!} \left[(x+2)^{2} (-1) + 2(x+2)(y-1)(-10) + (y-1)^{2} (-4) \right] \\
+ \frac{1}{3!} \left[(x+2)^{3} (-1) + 3(x+2)^{2} (y-1)(8) + 3(x+2)(y-1)^{2} (-2) + (y-1)^{3} (-2) \right] \\
+ \cdots \\
= 6 - 9(x+2) + 4(y-1) + \frac{1}{2} \left[6(x+2)^{2} - 20(x+2)(y-1) - 4(y-1)^{2} \right] \\
+ \frac{1}{6} \left[24(x+2)^{2} (y-1) - 6(x+2)(y-1)^{2} \right] + \cdots$$

of (x-1) & (y-2) up to third degree terms.

(D) Find Taylor's series expansion of function of f(x)= \(\int \text{1+x+y}^2\) in powers of (x-i) & y up to second degree terms.

(Pan Obtain the Taylor's series expansion of exsing in terms of powers of x xy upto third degree terms.

(0,0) [x=0, y=0] Function = e sino = (1)(0)=0 = (x,y) = exsing fx=e sino=()(0)=0 fx=ex sing Ay = 2 coso = (1)(1) = 1 fy= ez wsy 1xx = e sin 0 = (1)(0)=0 txx = exsing fry=e wso= (1)(1)=1 fxy = exwsy Ayy = - e sino = - (1)(0) = 0 Ayy = -exsing +xxx = e sino = (1)(0)=0 Axx = exsing txxy = e coso = ()(1)=1 faxy = ex way txyy=-e sino = -(1)(0)=0 fxyy = -ex sing fygy = -e coso = -(1)(1)=-1 tyyy = -excosy

Here a=0, b=0, h=x-a=x-0=x , k=y-b=y-0=y

By Taylor's Theorem,
$$\frac{1}{2!} \left[h_{1}^{2} \left(a, b \right) + \frac{1}{1!} \left[h_{1}^{2} \left(a, b \right) + k_{2}^{2} \left(a, b \right) \right] \\
+ \frac{1}{2!} \left[h_{2}^{2} \left(a, b \right) + 2hk_{1}^{2} \left(a, b \right) + k_{2}^{2} \left(a, b \right) \right] \\
+ \frac{1}{3!} \left[h_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{1}^{2} \left(a, b \right) + 3h_{2}^{2} k_{2}^{2} \left(a, b \right) + k_{3}^{2} \left(a, b \right) \right] \\
+ \frac{1}{3!} \left[h_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{1}^{2} \left(a, b \right) + 3h_{2}^{2} k_{2}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) \right] \\
+ \frac{1}{3!} \left[h_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) \right] \\
+ \frac{1}{3!} \left[h_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) + 3h_{2}^{2} k_{3}^{2} \left(a, b \right) \right]$$

$$f(x,y) = 0 + \frac{1}{1!} \left[x(0) + y(1) \right] + \frac{1}{2!} \left[x^{2}(0) + 2xy(1) + y^{2}(0) \right]$$

$$+ \frac{1}{3!} \left[x^{3}(0) + 3x^{2}y(1) + 3xy^{2}(0) + y^{3}(-1) \right] + \cdots$$

$$= y + \frac{1}{2} (2xy) + \frac{1}{6} (3x^{2}y - y^{3}) + \cdots$$

$$= y + xy + \frac{1}{6} (3x^{2}y - y^{3}) + \cdots$$

(25) Expand the function sinxy in powers of X-1 L y- I upto second degree terms, using Taylor's series.

Sol:	Function	2=1.0-72
	yx ris = (b.	$\frac{1}{4} = \sin(i)(T_2) = \sin T_2 = 1$
	= 62x4. A	IX = cox(1)(T/2). T/2 = cox T/2. T/2 = 0. T/2 = 0
	= wxy. x	$f_{y} = \omega_{A}(i)(\pi_{y_{2}}), i = \omega_{A}\pi_{y_{2}} = 0$
7×7	6- A(- vivxA). A	$\frac{1}{4} = -\left(\frac{\pi}{2}\right)^2 \sin(i)\left(\frac{\pi}{2}\right) = -\frac{\pi^2}{4} \sin(\frac{\pi}{2}) = -\frac{\pi^2}{4}$
	= -4 sinxy).x 1 = cos(1)(T/2)-(1)(T/2) sin(1)(T/2)
1 Any	= 60xy-1+y(-sinxy = 60xy-xysinxy	No. Test
1	= x(-sinxy).x	tyy=-(1)2 sin(1)(T/2)=- sin(T/2)=-1
1,90	= -x sinxy	

By Taylor's theorem,
$$f(x,y) = f(a,b) + \frac{1}{1!} [hf_x(a,b) + kfy(a,b)]$$

 $k=x-a=x-1$
 $k=y-b=y-y_2$
 $+\frac{1}{2!} [h^2f_{xx}(a,b) + 2hkf_{xy}(a,b) + k^2f_{yy}(a,b)] + \cdots$

$$\frac{1}{4(x,y)} = 1 + \frac{1}{1!} \left[(x-1)(0) + (y-\frac{\pi}{2})(0) \right] \\
+ \frac{1}{2!} \left[(x-1)^2 \left(-\frac{\pi^2}{4} \right) + 2(x-1)(y-\frac{\pi}{2}) \left(-\frac{\pi}{2} \right) + \left(y-\frac{\pi}{2} \right)^2 (-1) \right] + \cdots \\
= 1 + \frac{1}{2} \left[-\frac{\pi^2}{4} (x-1)^2 - \pi (x-1) (y-\frac{\pi}{2}) - (y-\frac{\pi}{2})^2 \right] + \cdots$$

(26) Expand exlog(14y) in powers of x & y upto the third degree torne, using Taylor's series.

usin	ng laylor's series.	(2 = 1) 10
	Function	x=0, y=0
	f(x,y)=ex log(1+y)	f= e° log(1+0) = e° log1 = (1)(0) = 0
	1x = ex log(1+y)	Ax= 2° log(1+0) = 2° log1 = (1)(0) = 0
	$4x = e^{x} (1+y)^{-1}$	$fy = e^{0}(1+0)^{-1} = e^{0}(1)^{-1} = (1)(1) = 1$
	$f_y = e^{\chi} \cdot \frac{1}{1+y} \cdot 1 = e^{\chi} (1+y)^{-1}$	17x = e log(1+0) = e log 1 = (1)(0) = 0
	fxx = ex log(1+y)	1 x y = 2 (1+0) = (1)(1) = 1
	$f_{xy} = e^{x(1+y)^{-1}}$	1 = -e (1+0) = - (1)(1) = -1
	$4xy = e^{x(-1)(1+y)^{2}} = -e^{x(1+y)^{2}}$	fxxx = 2 og(1+0) = (1)(0) = 0
	faxx = exlog(1+y)	1xxx = 20(1+0)-1=(1)(1)=1
	txxy = ex(1+y)-1	$4xxy = -e^{0}(1+0)^{-2} = -(1)(1) = -1$
	$=-e^{\chi}(1+\chi)^{-2}$	-3 12
	$4xyy = -e^{x}(-2)(1+y)^{-3} = 2e^{x}(1+y)^{-3}$	$\frac{1}{1} = 20^{\circ} (1+0)^{-3} = 2(1)(1) = 2$
	+ y y = - E C + y + O	

By Taylor's theorem, $f(x,y) = f(a,b) + \frac{1}{1!} \left[h_{4x}(a,b) + k_{4y}(a,b) \right]$ $+ \frac{1}{2!} \left[h_{4xx}^2(a,b) + 2hk f_{xy}(a,b) + k_{4yy}^2(a,b) \right]$ $+ \frac{1}{3!} \left[h_{4xx}^3(a,b) + 3h^2 k_{4xxy}^2(a,b) + 3hk^2 f_{xyy}(a,b) + k_{4yy}^3(a,b) \right]$ $+ \frac{1}{3!} \left[h_{4xxx}^3(a,b) + 3h^2 k_{4xxy}^3(a,b) + 3hk^2 f_{xyy}(a,b) + k_{4xyy}^3(a,b) \right]$

Here a=0, b=0 h=x-a=x-o=x, k=y-b=y-0=y

$$\frac{1}{1!} \left[x(0) + y(1) \right] + \frac{1}{2!} \left[x^{2}(0) + 2xy(1) + y^{2}(-1) \right] \\
+ \frac{1}{3!} \left[x^{3}(0) + 3x^{2}y(1) + 3xy^{2}(-1) + y^{3}(2) \right] + \cdots \\
= y + \frac{1}{2} \left(2xy - y^{2} \right) + \frac{1}{6} \left(3x^{2}y - 3xy^{2} + 2y^{3} \right) + \cdots$$

(H.W) Expand excosy about (0, T/2) upto the third term using Taylor's

② Obtain terms upto the third degree in the Taylor's series expansion of exsing around the point (1, T/2). ③ Expand $f(x,y) = e^{xy}$ in Taylor series at (1,1) upto second degree.

Maxima & ninima for functions of two variables:

Definitions:

Extremum value:

fla, b) is said to be an extremum value of flx, y) if it is either a maximum or a minimum.

Notations: $\frac{\partial x}{\partial t} = 4x$, $\frac{\partial y}{\partial t} = 4y$, $\frac{\partial x^2}{\partial t^2} = 4xx$, $\frac{\partial x}{\partial y} = 4xy$, $\frac{\partial y}{\partial t} = 4xy$

Sufficient conditions:

If tx(a,b)=0, ty(a,b)=0 & fxx(a,b)=A, txy(a,b)=B, tyy(a,b)=C,

(i) f(a,b) is maximum value if AC-B2>0 & AZO (or BZO)

(ii) {(a,b) is minimum value if AC-B2>0 & A>0 (or B>0)

(iii) f(a,b) is not an extremum (saddle) if AC-B2<0 A

(iv) If $AC-B^2=0$, then the test is inconclusive.

Stationary value:

A function f(x,y) is said to be stationary at (a,b) or f(a,b) is said to be a stationary value of f(x,y) if $f_{x}(a,b) = 0$ & ty(a,b)=0.

Note: Every extremum value is a stationary value but a stationary value need not be an extremum value.

(27) Examine \$(x,y) = x3+3xy-15x2-15y2+72x for extreme values. 24 | -10 -6 | -4 x-6 | x-4 501: Given \$(x,y) = x3+3xy2-15x2-15y2+72x 1x=3x2+3x2-30x+72 fy = 6 xy - 30y

Stationary points:

1x = 0 3x2+3x2-30x+72=0 -0 y=0 in 1

 $3x^2 - 30x + 72 = 0 \Rightarrow x^2 - 10x + 24 = 0$ $\Rightarrow (x-b)(x-4)=0$

:. The points are (4,0) & (6,0) => x=4,6

6xy-30y=0=>6y(x-5)=0

⇒y=0, x=5

 $75+3y^2-150+72=0 \Rightarrow 3y^2-3=0 \Rightarrow 3y^2=3 \Rightarrow y^2=1 \Rightarrow y=\pm \sqrt{1}=\pm 1$:. The points are (5,1) & (5,-1).

Hence the stationary points are (4,0), (6,0), (5,1) & (5,-1).

; c=+44=6x-30 $A = f_{xx} = 6x - 30$; $B = f_{xy} = 6y$

-txx	1 1	(6,0)	(5,1)	(5,-1)
	(4,0)	6>0	0	0
4=6x-30	-620		6	-b
3= 6 4	0	0	0	0
C= 6x-30	-6	6		-36 ≺0
1c-B2	36 > 0	36 >0	-36<0	Saddle point
Conclusion	Maximum	Minimum	Saddle point	Daddle Politi

f(4,0) = (4) + 3(4)(0) -15(4) -15(0) +72(4) = 112 \$(6,0) = (6)3+3(6)(0)2-15(6)2-15(0)2+72(6) = 108 Hence the maximum value is 112 4 the minimum value is 108.

(128) Find the maxima & minima of
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

Sol: Given $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Stationary points:

$$\frac{1}{4}x = 0$$

$$\Rightarrow x^3 - x + y = 0 - 0$$

Substituting 3 in 1,

$$\chi^{3}_{-} \times -\chi = 0 \Rightarrow \chi^{3}_{-} 2\chi = 0 \Rightarrow \chi(\chi^{2}_{-} 2) = 0$$

$$\Rightarrow \chi = 0 \quad , \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad , \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad , \quad \chi^{2}_{-} 2 = 0$$

$$\Rightarrow \chi = 0 \quad , \quad \chi = 1 \boxed{2} \quad -4$$

Substituting 4 in 3,

 $x=0 \Rightarrow y=0$; $x=\sqrt{2} \Rightarrow y=-\sqrt{2}$; $x=-\sqrt{2} \Rightarrow y=\sqrt{2}$ Hence the stationary points are (0,0), (12,-12) & (-12,12).

	(0,0)	(52, -52)	(-12,12)
A=12x2-4	-4	20>0	20 >0
B = 4	4	4	4
C= 12x -4	-4	20	20
Ac-82	0	384 ≻∘	384 ≻ 0
Conclusion	Inconducive	Minimum value	Minimum value.

 $\frac{1}{4}(\sqrt{2}, -\sqrt{2}) = (\sqrt{2})^{4} + (-\sqrt{2})^{4} - 2(\sqrt{2})^{2} + 4(\sqrt{2})(-\sqrt{2}) - 2(-\sqrt{2})^{2} = 4 + 4 - 4 - 8 - 4 = -8$ $\frac{1}{4(-\sqrt{2}, \sqrt{2})} = (-\sqrt{2})^{4} + (\sqrt{2})^{4} - 2(-\sqrt{2})^{2} + 4(-\sqrt{2})(\sqrt{2}) - 2(\sqrt{2})^{2} = 4 + 4 - 4 - 8 - 4 = -8$ Hence the minimum value is -8.

29) Find the extreme values of
$$f(x,y) = x^3y^2(1-x-y)$$
.

20): Given $f(x,y) = x^3y^2(1-x-y) = x^3y^2 - x^4y^2 - x^3y^3$
 $f_x = 3x^2y^2 - 4x^3y^2 - 3x^2y^3$
 $f_y = 2x^3y - 2x^4y - 3x^3y^2$
 $f_y = 4x^2y^2 - 4x^3y^2 - 6xy^3$
 $f_y = 4x^2y^2 - 6x^3y^2 - 6xy^3$
 $f_y = 6x^2y^2 - 6x^3y^2 - 6x^2y^2$
 $f_y = 6x^2y^2 - 6x^3y^2 - 6x^3y^2$
 $f_y = 6x^2y^2 - 6x^3y^2 - 6x^3y^2 - 6x^3y^2$
 $f_y = 6x^2y^2 - 6x^3y^2 - 6x^3y^2 - 6x^3y^2$
 $f_y = 6x^2y^2 - 6x^3y^2 - 6x^$

$$\Rightarrow 2x^{3}y - 2x^{4}y - 3x^{3}y^{2} = 0$$

$$\Rightarrow x^{2}y^{2}(3 - 4x - 3y) = 0$$

$$\Rightarrow x = 0, y = 0, 3 - 4x - 3y = 0$$

$$\Rightarrow x = 0, y = 0, 4x + 3y = 3 - 0$$

$$\Rightarrow x = 0, y = 0, 4x + 3y = 3 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

$$\Rightarrow x = 0, y = 0, 2x + 3y = 2 - 0$$

Substituting $x=\frac{1}{2}$ in \mathbb{Q} , $2(\frac{1}{2})+3y=2 \Rightarrow 1+3y=2 \Rightarrow 3y=2-1 \Rightarrow 3y=1 \Rightarrow y=\frac{1}{3}$ Hence the stationary points are $(0,0) \land (\frac{1}{2},\frac{1}{3})$.

Hence I've Alland	(0,0)	-1 <0
4=6xy -12x2y2-6xy3	0	9
2. 2.34 922	0	12
1-2x3-2x4-6x34	0	-18
Ac 82	0	144>0
Conclusion	Inconclusive	Maximum value

$$4\left(\frac{1}{2},\frac{1}{3}\right) = \left(\frac{1}{2}\right)^3 \left(\frac{1}{3}\right)^2 \left(1 - \frac{1}{2} - \frac{1}{3}\right) = \frac{1}{8} \times \frac{1}{9} \times \left(\frac{1}{b}\right) = \frac{1}{432}$$

Hence the maximum value is $\frac{1}{432}$.

3 Discuss the maxima & minima of the function \$(x,y) = x3+y3-30xy.

$$\Rightarrow 3x^2 - 3ay = 0$$

$$\Rightarrow x^2 - ay = 0 \Rightarrow x^2 = ay - 0$$

$$0 \Rightarrow y = \frac{x^2}{a} - 3$$

$$\frac{1}{3}y^{2} - 3\alpha x = 0 \Rightarrow y^{2} - \alpha x = 0$$

$$\Rightarrow y^{2} = \alpha x - 2$$

C = fyx = by

Substituting (3) in (2),
$$\left(\frac{\chi^{2}}{\alpha}\right)^{2} = \alpha x \Rightarrow \frac{\chi^{4}}{\alpha^{2}} = \alpha x \Rightarrow \frac{\chi^{4}}{\alpha} = \alpha^{3} \Rightarrow \chi^{3} = \alpha^{3}$$

$$\Rightarrow \chi = \alpha \qquad \Rightarrow \chi = \alpha \qquad \Rightarrow \chi = \alpha$$

Substituting 4 in 3,
$$y = \frac{a^2}{a} = a \Rightarrow y = a$$

Hence the stationary point is (a, a).

	The same of the sa
	(a,a)
A=6x	<u></u> ba
B=-3a	- 3a
C= 64	6a
$Ac-B^2$	$36a^2 - 9a^2 = 27a^2 > 0$
Conclusion	

24 a>0, then A>0 ⇒ Minimum value at (a,a). If a < 0, then A < 0 => Maximum value at (a,a).

 $f(a,a) = a^3 + a^3 - 3a(a)(a) = 2a^3 - 3a^3 = -a^3$

Hence the maximum or minimum value at (a, a) is -a3.

(D) Find the maximum or minimum values of f(x,y) = 3x2-y2+ x3.

(DE) Find the maximum or minimum values of f(x,y) = x+y2+6x+12.

3 Examine x3y2(12-x-y) for extreme values.

(4) Find the maxima & minima of xy(a-x-y).

(3) If
$$z = f(x,y)$$
 where $x = r\cos\theta + y = r\sin\theta$, show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$.

Sol: Given $z = f(x,y)$, $x = r\cos\theta$, $y = r\sin\theta$

$$\frac{\partial x}{\partial r} = \cos \theta = \frac{x}{r}$$

$$\frac{\partial y}{\partial r} = \sin \theta = \frac{y}{r}$$

$$\frac{\partial y}{\partial r} = r\cos \theta = x$$

$$\frac{\partial x}{\partial \theta} = -x\sin\theta = -y$$

$$\frac{\partial y}{\partial \theta} = x\cos\theta = x$$

$$\frac{\partial x}{\partial x} = \frac{9x}{9x} \cdot \frac{9x}{9x} + \frac{9x}{9x} \cdot \frac{9x}{9x} = \frac{x}{x} \cdot \frac{9x}{9x} + \frac{x}{4} \cdot \frac{9\lambda}{9x}$$

$$\frac{\partial z}{\partial z} = \frac{\partial x}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial y}{\partial z} \cdot \frac{\partial y}{\partial \theta} = -y \cdot \frac{\partial x}{\partial z} + x \cdot \frac{\partial y}{\partial z}$$

$$\left(\frac{\partial z}{\partial x}\right)^{2} = \left(\frac{x}{x}\frac{\partial z}{\partial x} + \frac{y}{x}\frac{\partial z}{\partial y}\right)^{2} = \frac{1}{x^{2}}\left(x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}\right)^{2}$$

$$= \frac{1}{x^{2}}\left(x^{2}\left(\frac{\partial z}{\partial x}\right)^{2} + y^{2}\left(\frac{\partial z}{\partial y}\right)^{2} + 2xy\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}\right)$$

$$= x_{5} \left(\frac{\partial \lambda}{\partial z} \right)_{5} + \lambda_{5} \left(\frac{\partial \lambda}{\partial z} \right)_{5} - 5x\lambda \frac{\partial \lambda}{\partial z} \frac{\partial \lambda}{\partial z}$$

$$\left(\frac{\partial \phi}{\partial z} \right)_{5} = \left(-\lambda \frac{\partial \lambda}{\partial z} + \lambda \frac{\partial \lambda}{\partial z} \right)_{5} = \left(\lambda \frac{\partial \lambda}{\partial z} - \lambda \frac{\partial \lambda}{\partial z} \right)_{5}$$

$$= \frac{1}{r^2} \left(\chi^2 \left(\frac{\partial z}{\partial y} \right)^2 + y^2 \left(\frac{\partial z}{\partial x} \right)^2 - 2\chi y \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \right)$$

$$= \frac{1}{r^2} \left(\chi^2 \left(\frac{\partial z}{\partial x} \right)^2 + y^2 \left(\frac{\partial z}{\partial y} \right)^2 + \chi^2 \left(\frac{\partial z}{\partial y} \right)^2 + y^2 \left(\frac{\partial z}{\partial x} \right)^2 \right)$$

$$=\frac{1}{r^2}\left[\left(\frac{\partial x}{\partial x}\right)^2\left(x^2+y^2\right)+\left(\frac{\partial z}{\partial y}\right)^2\left(x^2+y^2\right)\right]$$

$$=\frac{1}{32}\left[\left(\chi^{2}+y^{2}\right)\left(\left(\frac{\partial x}{\partial x}\right)^{2}+\left(\frac{\partial x}{\partial y}\right)^{2}\right)\right]$$

$$=\frac{1}{\sqrt{2}}\times r^2\times \left(\left(\frac{\partial x}{\partial z}\right)^2+\left(\frac{\partial y}{\partial z}\right)^2\right)$$

$$= \left(\frac{3x}{3z}\right)^2 + \left(\frac{3y}{3z}\right)^2$$

Hence
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$$

Lagrange's method of undetermined multipliers:

(32) A thin closed rectangular box is to have one edge equal to twice

the other & constant volume 72 m³. Find the least surface area of the box.

301: Let x, y, 2 y be the length, breadth & height of the box

respectively.

Surface area = 2xy + 2(y)(2y) + 2(x)(2y) = 2xy + 4y2 + 4xy = 6xy + 4y2 Volume = (x)(y)(2y) = 2xy2 = 72 => xy2 = \frac{72}{2} = 36 -> xy2 = 36 -\frac{1}{2} $F = (6xy + 4y^2) + \lambda(xy^2 - 36) = 6xy + 4y^2 + \lambda xy^2 - 36\lambda$

Fx = 6y + 2x2 ; Fy = 6x + 8y + 2xxy

=>64+x42=0 => ph = -x42 $\Rightarrow b = -\lambda y \Rightarrow \frac{b}{y} = -\lambda \longrightarrow 0$ >6x+8y+2xxy=0 > 6x+8y=-2xxy => 3x+4y=-xxy => 3x+4y=-x $\Rightarrow \frac{3}{7} + \frac{4}{x} = -\lambda - 2$

From ①&①, $\frac{6}{7} = \frac{3}{7} + \frac{4}{x} \Rightarrow \frac{6}{7} - \frac{3}{7} = \frac{4}{x} \Rightarrow \frac{3}{7} = \frac{4}{x}$ $\Rightarrow 3x = 4y \Rightarrow y = \frac{3}{4}x$

Substituting 3 in (*), $x(\frac{3}{4}x)^{2} = 36 \Rightarrow x(\frac{9}{16}x^{2}) = 36 \Rightarrow \frac{9}{16}x^{3} = 36 \Rightarrow x^{3} = \frac{36 \times 16}{9} = 64 = 4^{3}$

 $\therefore y = \frac{3}{4}(4) = 3 \implies \boxed{y=3}$

: Least surface area = 6xy+4y2 = 6(4)(3)+4(3)= 108.

(33) Find the dimensions of the rectangular box without a top of maximum capacity, whose surface area is 108 sq.cm.

301: Let x, y, z be the length, breadth & height of the box. Surface area = xy + 24z+2zx = 108 -1

$$\Rightarrow \frac{4+2z}{4z} = \frac{-1}{\lambda}$$

From (2 & 3),

$$\frac{1}{z} + \frac{2}{y} = \frac{1}{z} + \frac{2}{x}$$

$$\Rightarrow \frac{2}{y} = \frac{2}{x} \Rightarrow 2x = 2y$$

$$\Rightarrow \frac{xz}{x+2z} = -\lambda$$

$$\Rightarrow \frac{\chi + 2\chi}{\chi z} = \frac{-1}{\lambda}$$

$$\Rightarrow \frac{1}{z} + \frac{2}{x} = -\frac{1}{\lambda}$$

$$\Rightarrow \frac{2y+2x}{xy} = \frac{-1}{\lambda}$$

$$\Rightarrow \frac{1}{z} + \frac{2}{x} = -\frac{1}{\lambda} - 3 \Rightarrow \frac{2}{x} + \frac{2}{y} = -\frac{1}{\lambda} - 3$$

Here x,=1, y,=2, Z,=-1

d= 1(x-x1)2+(y-y1)2+(z-z1)2

From 3&4,

$$\frac{1}{z} + \frac{2}{x} = \frac{2}{x} + \frac{2}{y}$$

From
$$G \& G$$
, $x = y = 2z$
 $\therefore O \Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow (2z)(2z) + 2(2z)z + 2z(2z) = 108$
 $\Rightarrow (2z)(2z) + 2(2z)z + 2z(2z) = 108$

$$\Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow (9z)(2z)$$

$$\Rightarrow 2y + 2yz + 2zx = 108 \Rightarrow 12z^{2} = 108 \Rightarrow z^{2} = 9 \Rightarrow \boxed{z = 3}$$

$$\Rightarrow 4z^{2} + 4z^{2} + 4z^{2} = 108 \Rightarrow 12z^{2} = 108 \Rightarrow z^{2} = 9 \Rightarrow \boxed{z = 3}$$

Maximum volume = xyz = (6)(6)(3) = 108.

(A) Find the shortest & the longest distances from the point (1,2,-1) to

the sphere 22+ y2+ z2= 24.

$$F = (x-1)^{2} + (y-2)^{2} + (z+1)^{2} + \lambda (x^{2}+y^{2}+z^{2}-24)$$

$$F_{x} = 2(x-1) + 2x\lambda$$
; $F_{y} = 2(y-2) + 2y\lambda$

Fy=0 Fx=0 $2(x-1)+2x\lambda=0$ $\chi - 1 + \chi \lambda = 0$ $x+x\lambda=1$ $x(1+\lambda)=1$ $x = \frac{1}{1+\lambda}$ From 1, 2 & 3, ~ x2+y2+z2=24 ⇒ (-z)+(-2z)2+z2=24 $Z=2 \Rightarrow x=-2$, y=-2(2)=-4 $2=-2 \Rightarrow \chi=2$, y=-2(-2)=4Z= x++1. Sol: Given ==x+y x (1,2,0) d= \((x-1)^2+(y-2)^2+(z-0)^2 $d^{2} = (x-1)^{2} + (y-2)^{2} + z^{2}$ F= (x-1)+(y-2)+z2+x(z2-x2-y2)

Fx=0

 $\chi - 1 - \chi \lambda = 0$

x-1 = x>

 $\frac{\chi-1}{\chi}=\lambda$

2(2+1)+22 =0 2(4-2)+24/=0 Z+1+Z \= 0 4-2+4X=0 ス+マ入= -1 4+4X=2 z(1+x)=-1 y(1+x)=2 $\frac{y}{2} = \frac{1}{1+\lambda} - 2$ $\chi = \frac{y}{2} = -z \Rightarrow \chi = -z , \quad \frac{y}{2} = -z \Rightarrow \chi = -z , \quad y = -2z$ \Rightarrow $z^2+4z^2+z^2=24 \Rightarrow 6z^2=24 \Rightarrow z^2=4 \Rightarrow z=\pm\sqrt{4}=\pm2$ Hence the points are (-2,-4,2) + (2,4,-2). $d = \sqrt{(-2-1)^2 + (-4-2)^2 + (2+1)^2} = \sqrt{9+36+9} = \sqrt{54} = 3\sqrt{6}$ $d = \sqrt{(2-1)^2 + (4-2)^2 + (-2+1)^2} = \sqrt{1+4+1} = \sqrt{6}$ Hence the shortest & longest distances are 16 & 316 respectively. (35) Find the minimum distance from the point (1,2,0) to the cone ; Fz = 22+22) $F_{x} = 2(x-1)-2x\lambda$; $F_{y} = 2(y-2)-2y\lambda$ F7 = 0 2x+2x >= 0 $2(x-1)-2x\lambda=0$ $2(y-2)-2y\lambda=0$ エナエカ=0 y-2-y2=0 Ζ=- ζλ y-2=yx $\frac{Z}{Z} = \lambda$ $\frac{3-2}{3} = \lambda$ $1-\frac{1}{x}=\lambda$ 1-2=> -2

$$1-\frac{1}{x}=-1 \Rightarrow 1+1=\frac{1}{x} \Rightarrow 2=\frac{1}{x} \Rightarrow x=\frac{1}{2}$$

$$1-\frac{2}{7}=-1 \Rightarrow 1+1=\frac{2}{7} \Rightarrow 2=\frac{2}{7} \Rightarrow 7=\frac{2}{2} \Rightarrow 7=1$$

$$\therefore z^{2} = x^{2} + y^{2} \Rightarrow z^{2} = (\frac{1}{2})^{2} + 1^{2} = \frac{1}{4} + 1 = \frac{5}{4} \Rightarrow z = \pm \sqrt{\frac{5}{4}} = \pm \frac{\sqrt{5}}{2}$$

$$d = \sqrt{(\frac{1}{2}-1)^2 + (1-2)^2 + (\frac{\sqrt{5}-2}{2})^2} = \sqrt{\frac{1}{4}+1 + \frac{5}{4}} = \sqrt{\frac{3}{2}+1} = \sqrt{\frac{7}{2}}$$

$$d = \int \left(\frac{1}{2} - 1 \right)^2 + \left(1 - 2 \right)^2 + \left(-\frac{\sqrt{57}}{2} \right)^2 = \int \frac{57}{2}$$

Hence the nienimum distance is 5%.

(36) Find the maximum volume of the largest rectangular parallelopiped that can be inscribed in an ellipsoid $\frac{\chi^2}{a^2} + \frac{\chi^2}{b^2} + \frac{z^2}{c^2} = 1$.

Sol: Given
$$\frac{\chi^2}{a^2} + \frac{\chi^2}{b^2} + \frac{z^2}{c^2} = 1$$

Volume of parallelopiped = (2x)(2y)(2z) = 8xyz

$$F = 8xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \right)$$

$$F = 8xyz + \lambda \frac{x^2}{a^2} + \lambda \frac{y^2}{b^2} + \lambda \frac{z^2}{c^2} - \lambda$$

$$F_x = 8yz + \frac{2x\lambda}{a^2}$$
; $F_y = 8xz + \frac{2\lambda y}{b^2}$

$$8yz + \frac{2x\lambda}{2} = 0$$

$$8yz = -\frac{2x\lambda}{2}$$

$$4yz = \frac{-x\lambda}{a^2}$$

$$4xyz = -\frac{x^2\lambda}{a^2}$$

$$\frac{4x4^{2}}{-\lambda} = \frac{x^{2}}{a^{2}} - 2$$

$$8xz + \frac{2xy}{b^2} = 0$$

$$8xz = -\frac{2\lambda y}{b^2}$$

$$4xz = -\frac{\lambda y}{b^2}$$

$$4xyz = -\frac{\lambda y^2}{b^2}$$

$$\frac{4xyz}{b^2} = \frac{y^2}{b^2} - 3$$

$$8xy+2\frac{\lambda z}{c^2}=0$$

$$8xy = -\frac{2\lambda z}{r^2}$$

$$4xy = -\frac{\lambda z}{c^2}$$

$$4xyz = -\lambda z^2$$

$$\frac{4xy^2}{-\lambda} = \frac{z^2}{c^2} - \oplus$$

From Q, 3 & 4,
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

$$\frac{\chi^2}{\alpha^2} + \frac{\chi^2}{\alpha^2} + \frac{\chi^2}{\alpha^2} = 1 \implies \frac{3\chi^2}{\alpha^2} = 1 \implies \chi^2 = \frac{\alpha^2}{3} \implies \chi = \frac{\alpha}{\sqrt{3}}$$

Similarly,
$$y = \frac{b}{\sqrt{3}} + z = \frac{c}{\sqrt{3}}$$

Maximum volume =
$$8 \times y^2 = 8 \left(\frac{a}{\sqrt{3}}\right) \left(\frac{b}{\sqrt{3}}\right) \left(\frac{c}{\sqrt{3}}\right) = \frac{8abc}{3\sqrt{3}}$$

F= x y z +
$$\lambda(x+y+z-a)$$
 = x y z + $\lambda x + \lambda y + \lambda z - \lambda a$
m n-1 p λ ; Fz= px y

$$F_{x} = 0$$

$$mx^{m-1}y^{n}z^{p} + \lambda = 0$$

$$mx^{m-1}y^{n}z^{p} = -\lambda$$

$$\frac{x^{m}y^{n}z^{p}}{x} = -\lambda - 0$$

$$\frac{m \times y^{n} z^{p}}{x} = -\lambda - 0$$

$$\frac{m \times y^{n} z^{p}}{x} = -\lambda - 0$$

$$p_{x}^{m}y^{n}z^{p-1}+\lambda=0$$

$$p_{x}^{m}y^{n}z^{p-1}=-\lambda$$

$$p_{x}^{m}y^{n}z^{p}=-\lambda$$

$$p_{x}^{m}y^{n}z^{p}=-\lambda$$

From 1, 2 & 3,

$$\frac{1}{m_{x}m_{y}n_{z}p} = \frac{n_{x}m_{y}n_{z}p}{y} = \frac{p_{x}m_{y}n_{z}p}{z}$$

Dividing by xmynzp, we get

$$\frac{m}{x} = \frac{n}{y} = \frac{p}{z}$$

$$\frac{M}{X} = \frac{P}{Z}$$

$$\Rightarrow X = \frac{MZ}{A} - A$$

$$\frac{M}{X} = \frac{P}{Z}$$

$$\Rightarrow X = \frac{MZ}{P} - \Phi$$

$$\Rightarrow Y = \frac{NZ}{P} - \Phi$$

: Decomes,

$$\frac{mz}{p} + \frac{nz}{p} + z = a \Rightarrow z\left(\frac{m}{p} + \frac{n}{p} + 1\right) = a$$

$$\Rightarrow z\left(\frac{m+n+p}{p}\right) = a \Rightarrow z = \frac{ap}{m+n+p} - 6$$

$$x = \frac{map}{p(m+n+p)} = \frac{ma}{m+n+p}$$

$$y = \frac{nap}{p(m+n+p)} = \frac{an}{m+n+p}$$

Maximum value of
$$x^{m}y^{n}z^{p} = \left(\frac{am}{m+n+p}\right)^{m} \left(\frac{an}{m+n+p}\right)^{n} \left(\frac{ap}{m+n+p}\right)^{p}$$

$$= \frac{a^{m}m}{(m+n+p)^{m}} \cdot \frac{a^{n}n^{n}}{(m+n+p)^{n}} \cdot \frac{a^{p}p^{p}}{(m+n+p)^{n}}$$

$$= \frac{a^{m+n+p} m^m n^n p^p}{(m+n+p)^{m+n+p}}.$$

- Find the minimum values of x²yz³ subject to the condition 2x+y+3z=a.
 - ② Find the maximum value of 400xy z² subject to the condition
 - 3) Find the dimensions of the rectangular box without top of maximum capacity with surface area 432 square metres.
 - A rectangular box open at the top, is to have a volume of 32cc.

 Find the dimensions of the box, that requires the least material for its construction.

(Fundamental theorem of calculus:

Suppose of is continuous on [a,b].

(i) If g(x) = If(t) dt, then g'(x) = f(x).

(ii) \$\int_{\frac{1}{2}} \delta(x) dx = F(b) - F(a), where F is any anti-derivative of f, that is F'=f.

(A) Find the derivative of G(x) =] costEdt.

301: Given GI(x) = JOSSE dt = - JOSSE dt

Here f(t) = costt is continuous.

: G'(x)=-005 x

(De Evaluate) (x3-6x) dx by using Riemann sum with n sub intervals.

Sol: Take n sub intervals, we have $\Delta x = \frac{b-a}{n} = \frac{3-o}{n} = \frac{3}{n}$

 $x_0 = 0$, $x_1 = \frac{3}{n}$, $x_2 = \frac{b}{n}$, $x_3 = \frac{9}{n}$, ..., $x_i = \frac{3i}{n}$. Here $\frac{1}{2}(x) = x^3 - bx$

 $\int_{0}^{3} (x^{3} - 6x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{4(x_{i})} \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{4(\frac{3i}{n})} \left(\frac{3}{n}\right)$

 $= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\left(\frac{3i}{n} \right)^3 - b \left(\frac{3i}{n} \right) \right)$

 $= \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(\frac{27i^{3}}{n^{3}} - \frac{18i}{n} \right)$

= $\lim_{n\to\infty} \frac{81}{n^4} \frac{n}{i=1} \frac{13}{1} - \lim_{n\to\infty} \frac{54}{n^2} \frac{1}{i=1}$

 $=\lim_{n\to\infty}\frac{81}{n^4}\left[\frac{n(n+1)}{2}\right]^2-\lim_{n\to\infty}\frac{54}{n^2}\left[\frac{n(n+1)}{2}\right]$

 $= \lim_{N \to \infty} \frac{81}{N^{4}} \left[\frac{n^{2}(1+\frac{1}{N})}{2} \right]^{2} - \lim_{N \to \infty} \frac{54}{n^{2}} \left[\frac{n^{2}(1+\frac{1}{N})}{2} \right]$

 $= \lim_{n\to\infty} \frac{81}{n^4} \times n^4 \frac{1+\frac{1}{2}}{4} - \lim_{n\to\infty} \frac{54}{n^2} \times n^2 \frac{1+\frac{1}{2}}{2}$

 $= \lim_{n \to \infty} \frac{81}{4} \left(1 + \frac{1}{n} \right)^2 - \lim_{n \to \infty} 27 \left(1 + \frac{1}{n} \right) = \frac{81}{4} - 27 = -\frac{27}{4}$

$$\frac{\text{Note:}}{0} = \frac{n(n+1)}{2}$$

Note:
$$0 \stackrel{N}{\underset{i=1}{\cancel{\sum}}} i = \frac{n(n+1)}{2}$$
 $2 \stackrel{N}{\underset{i=1}{\cancel{\sum}}} i^2 = \frac{n(n+1)(2n+1)}{6}$ $3 \stackrel{N}{\underset{i=1}{\cancel{\sum}}} i^3 = \left(\frac{n(n+1)}{2}\right)^2$

$$(3) \sum_{k=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

(A.W) Evaluate J(x2-2x) dx by using Riemann sum with n sub intervals.

(A) What is wrong with the equation $\int_{-\infty}^{\infty} \frac{4}{x^3} dx = \left[\frac{-2}{x^2}\right]_{-\infty}^{\infty} = \frac{3}{2}$? Sol: Here $f(x) = \frac{4}{x^3}$ is not continuous in the interval [-1,2]. Since $f(x) = \frac{4}{x^3}$ is discontinuous at x = 0. : 5 4 dx doesn't exist.

Formulae:

formulae:

$$0 \int_{x^{n}} dx = \frac{x^{n+1}}{n+1} + c, \quad 2 \int_{x} \frac{1}{x} dx = \log x + c$$

$$(5) \int dx = x + c \qquad (6) \int a dx = ax + c, \text{ where a is a constant.}$$

(4) Evaluate the following:

(i)
$$\int \left(\frac{b}{x^2} + \sqrt{x} + x^{3/2} + \frac{5}{x} + 1\right) dx$$

$$\frac{50!}{\sqrt{x^2}} \int \left(\frac{b}{x^2} + \sqrt{x} + x^{3/2} + \frac{7}{x} + 1\right) dx = \int \left(6x^{-2} + x^{3/2} + \frac{5}{x} + 1\right) dx$$

$$= 6x^{-2+1} + \frac{x^{3/2}}{-2+1} + \frac{x^{3/2+1}}{3/2+1} + 5\log x + x + c$$

$$= \frac{bx^{-1}}{-1} + \frac{x^{3/2}}{3/2} + \frac{x^{5/2}}{5/2} + 5\log x + x + c$$

$$= -\frac{b}{x} + \frac{2}{3}x^{3/2} + \frac{2}{5}x^{5/2} + 5\log x + x + c$$

(ii)
$$\int \frac{x^2 + 3x - 5}{\sqrt{x}} dx$$

$$\frac{50!}{\sqrt{x}} \int \frac{x^2 + 3x - 5}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} (x^2 + 3x - 5) dx$$

$$= \int \left(x^{-\frac{1}{2}}x^{2} + 3x^{-\frac{1}{2}}x - 5x^{-\frac{1}{2}}\right) dx$$

$$= \int \left(x^{-\frac{1}{2}+2} + 3x^{-\frac{1}{2}+1} - 5x^{-\frac{1}{2}}\right) dx = \int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}} - 5x^{-\frac{1}{2}}\right) dx$$

$$= \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + 3\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} - 5\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C$$

$$= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 5\frac{x^{\frac{3}{2}}}{\frac{1}{2}} + C = \frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}} - 10\sqrt{x} + C$$

$$\frac{501:}{\int (e^{2x} + 3x - 7) dx} = \frac{e^{2x}}{2} + 3\frac{x^2}{2} - 7x + C$$

$$\frac{50!}{5!} \int (e^{\log x} + 2) dx = \int (x+2) dx = \frac{x^2}{2} + 2x + C$$

$$(v) \int x^2 (1-x)^2 dx$$

$$\frac{50!}{50!} \int x^{2} (1-x)^{2} dx = \int x^{2} (1+x^{2}-2x) dx$$

$$= \int (x^{2}+x^{4}-2x^{3}) dx$$

$$= \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{2x^{4}}{4} + C$$

$$= \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{4}}{2} + C$$

(Hw) Evaluate the following:

(i)
$$\int (x^{4} - \frac{1}{2}x^{3} + \frac{1}{4}x - 2) dx$$
 (ii) $\int \frac{x^{3} - 2\sqrt{x}}{x} dx$

(ii)
$$\int \frac{x^3 - 2\sqrt{x}}{x} dx$$

$$(ii) \int (e^{x} + x^{2} + 8) dx$$

Sol: Take
$$2x=t$$

$$2dx=dt \Rightarrow dx = \frac{dt}{2}$$
When $x=0 \Rightarrow t=0$

$$x=2 \Rightarrow t=2(2)=4$$

$$\int_{0}^{2} \frac{1}{4(2x)} dx = \int_{0}^{4} \frac{1}{4(1)} \frac{dt}{2} = \frac{1}{2} \int_{0}^{4} \frac{1}{4(1)} dt = \frac{1}{2} (10) = 5$$

Formulae:

O Sinx dx = - coxx+c

3 J sec ndx = tanx + c

5 Secxtanxdx = secx+C

D [coshxdx = sinhx+c

9 5 1 dx = tan-1x+c

(1) $\int \frac{1}{\sqrt{x^2-1}} dx = \log(x+\sqrt{x^2-1}) + c$

 $\int \frac{1}{x\sqrt{x^2-1}} dx = sec^{-1}x + C$

@ Joszdx = sinx+c

(4) Juneizadx = -cotx+c

(6) Juseux cotrdx = - cosecx + c

(8) Ssinhxdx = wshx+c

 $\int \frac{1}{\sqrt{1-x^2}} dx = sin^{-1}x + c$

 $\sqrt{12} \int \frac{1}{\sqrt{x^2+1}} dx = \log(x + \sqrt{x^2+1}) + C$

 $\sqrt{4}\int \sin 2x dx = -\frac{\cos 2x}{2} + c$

(A) Evaluate J lanx dx.

Sol: $\int \frac{|\Delta u \times dx|}{|\Delta u \times dx|} dx = \int \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \cos x} dx$

 $= \int \frac{\sin x}{\cos x} dx = \int \frac{\sin x}{\cos x} \times \frac{\cos x}{1 + \cos^2 x} dx$

 $= \int \frac{\sin x}{1 + \cos^2 x} dx$

 $=\int \frac{-dt}{1+t^2} = -\int \frac{dt}{1+t^2}$

=- tan-1+ + c = -tan-1 (cosx)+c

TEvaluate the following:

(i) JIII dx

 $\frac{50!}{1+\sin x} = \int \frac{1}{1+\sin x} \frac{1-\sin x}{1-\sin x} dx$ $= \int \frac{1-\sin x}{1-\sin x} dx = \int \frac{1-\sin x}{\cos^2 x} dx$ $= \int \left(\frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x}\right) dx = \int \left(\sec^2 x - \tan x \sec x\right) dx$ $= \tan x - \sec x + c$

$$\frac{Sol:}{\int \frac{\cos^2 x}{1-\sin x} dx} = \int \frac{1-\sin^2 x}{1-\sin x} dx$$

$$= \int \frac{(1+\sin x)(1-\sin x)}{1-\sin x} dx = \int (1+\sin x) dx$$

X-WAX+C

(iii)
$$\int (\tan x - 2\cos x)^{4x}$$

$$= \int (\tan^{2}x + 4\cos^{2}x - 4\tan x \cot x) dx$$

$$= \int (\sec^{2}x - 1 + 4(\cos^{2}x - 1) - 4\tan x \frac{1}{\tan x}) dx$$

$$= \int (\sec^{2}x - 1 + 4\cos^{2}x - 4 - 4) dx$$

$$= \int (\sec^{2}x + 4\cos^{2}x - 9) dx$$

$$= \tan x + 4(-\cot x) - 9x + c$$

$$= \tan x - 4\cot x - 9x + c$$

Evaluate the following:
(i)
$$\int \frac{s \ln^2 x}{1+\cos x} dx$$
 (ii) $\int \frac{1}{1-\cos x} dx$ (iii) $\int \left(\frac{3}{1-x^2} + e^x + 8\right) dx$

(iii)
$$\int \left(\frac{3}{1-x^2} + e^x + 8\right) dx$$

@ Evaluate the following:

(i)
$$\int (x^2 + 2x - 5) dx$$

$$\frac{1}{50!} \int_{1}^{4} (x^2 + 2x - 5) dx = \left[\frac{x^3}{3} + \frac{2x^2}{2} - 5x \right]_{1}^{4} = \left[\frac{x^3}{3} + x^2 - 5x \right]_{1}^{4}$$

$$= \left[\frac{64}{3} + 16 - 20 - \left(\frac{1}{3} + 1 - 5 \right) \right]$$

$$= \frac{64}{3} + 16 - 20 - \frac{1}{3} - 1 + 5 = 21$$

(ii)
$$\int_{0}^{1} (2-|x|) dx$$

 $\frac{30!}{2} \int_{0}^{1} (2-|x|) dx$

Here
$$f(x)=2-|x|$$
 is an even
function

$$\int_{-a}^{a} \frac{1}{1+x} dx = \int_{0}^{a} \frac{1}{1+x$$

$$f(x) = 2-|x|$$

 $f(-x) = 2-|-x| = 2-|x| = f(x)$

$$\int_{0}^{1} (2-|x|) dx = 2 \int_{0}^{1} (2-x) dx = 2 \left[2x - \frac{x^{2}}{2}\right]_{0}^{1}$$

$$= 2 \left[2 - \frac{1}{2}\right] = 2 \times \frac{3}{2} = 3$$

$$\left(0 \times \frac{1}{1+\ln x} dx\right) = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \left(0 \times \frac{1}{1+\ln x} dx\right)$$

$$\int_{0}^{1} \frac{1}{1+\ln x} dx = \frac{1}{1+\ln x}$$

$$\int_{0}$$

Scanned with CamScanner

$$= \int_{0}^{\pi/2} \log 1 \, dx = \int_{0}^{\pi/2} 0 \, dx = 0$$

$$\therefore 2 = 0 \Rightarrow \int_{0}^{\pi/2} \log (\tan x) \, dx = 0$$

Substitution rule:

$$du = (2+2x)dx = 2(1+x)dx \Rightarrow (x+i)dx = \frac{du}{2}$$

$$\int (x+1) \sqrt{2x+x^2} \, dx = \int \sqrt{u} \, \frac{du}{2} = \frac{1}{2} \int \sqrt{u} \, du = \frac{1}{2} \int u^{1/2} \, du$$

$$= \frac{1}{2} \left[\frac{u^{1/2+1}}{1/2+1} \right] + c = \frac{1}{2} \left[\frac{u^{3/2}}{3/2} \right] + c$$

$$= \frac{1}{2} \times \frac{2}{3} u^{3/2} + c = \frac{1}{3} (2x+x^2)^{3/2} + c$$

$$2udu = dx$$

$$\therefore \int \frac{x^2}{\sqrt{x+5}} dx = \int \frac{(u^2-5)^2}{\sqrt{u^2}} 2udu = \int \frac{(u^2-5)^2}{u} 2udu = 2 \int (u^2-5)^2 du$$

$$= 2 \int (u^4+25-10u^2) du = 2 \left(\frac{u^5}{5}+25u-10\frac{u^3}{3}\right) + c$$

$$= 2 \left(\frac{(x+5)^{5/2}}{5}+25\sqrt{x+5}-10\frac{(x+5)^{3/2}}{3}\right) + c$$

Sol: Put
$$u = \log x$$

$$du = \frac{1}{x} dx$$

when
$$x=1 \Rightarrow u = \log 1 = 0$$

 $x=e \Rightarrow u = \log e = 1$

$$\int_{1}^{2} \frac{\log x}{x} dx = \int_{0}^{1} u du = \left(\frac{u^{2}}{2}\right)_{0}^{1} = \frac{1}{2}$$

$$du = e^{1/x}$$
. $\left(\frac{-1}{x^2}\right) dx \Rightarrow \frac{dx}{x^2} = \frac{-du}{e^{1/x}} = -\frac{du}{u}$

When x=1 => u=e

$$x=2 \Rightarrow u=e^{\frac{1}{2}}=\sqrt{e}$$

$$\int \frac{e^{\frac{1}{2}x}}{x^2} dx = \int u(-\frac{du}{u}) = -\int u du = -(u) = -(\sqrt{e}) = e^{-\sqrt{e}}$$

$$du = \frac{1}{1+x^2} dx$$

1+x+x= 1+tanu+tanu = tanu+secu

$$-\int_{e}^{1} \int_{e}^{1} \frac{1+x+x^{2}}{1+x^{2}} dx = \int_{e}^{u} \left(\frac{1+x+x^{2}}{1+x^{2}} \right) du$$

Put t = e tanu

$$\int_{a}^{a} \overline{\tan^{-1}x} \left(\frac{1+x+x^{2}}{1+x^{2}} \right) dx = \int_{a}^{b} dt = b+c$$

$$= e^{ut} \overline{\tan u + c} = e^{tan^{-1}x} tan(tan^{-1}x) + c$$

$$= xe^{tan^{-1}x} + c$$

(11,00) Evaluate the following:

(iii)
$$\int \frac{e^x}{e^{x+1}} dx$$

(v)
$$\int \frac{(\log x)^2}{x} dx$$

(iv)
$$\int_{0}^{1} \frac{e^{x}+1}{e^{x}+x} dx$$

Integration by parts:

$$\therefore \int x \cos 5 x dx = x \frac{\sin 5 x}{5} - \int \frac{\sin 5 x}{5} dx$$

$$= \frac{x}{5} \sin 5 x - \frac{1}{5} \left(-\frac{\cos 5 x}{5} \right) + C$$

$$= \frac{x}{5} \sin 5 x + \frac{1}{25} \cos 5 x + C$$

Sol:
$$u=x^5$$

$$u'=5x^4$$

$$v'=e^x dx$$

$$v'=e^x dx$$

$$v''=e^x dx$$

$$v''=e^x dx$$

$$v''=e^x dx$$

$$v''=e^x dx$$

$$v''=e^x dx$$

$$v''=e^x dx$$

$$u = 120 \times \sqrt{3} = e^{x}$$

$$u' = 120 \times \sqrt{4} = e^{x}$$

$$u^{V} = 120$$
 $v_{+}^{V} = e^{x}$

$$-1.\int_{x}^{5} e^{x} dx = x^{5} e^{x} - 5x^{4} e^{x} + 20x^{3} e^{x} - 60x^{2} e^{x} + 120x e^{x} - 120e^{x} + C$$

(A) Using integration by parts, evaluate
$$\int \frac{(\ln x)^2}{x^2} dx$$
.

Using integration by 1

Sol:
$$u = (\log x)^2$$
 $dv = \frac{dx}{x^2} = x^{-2}dx$
 $du = 2\log x \cdot \frac{1}{x}dx$
 $v = \frac{x^{-2+1}}{-2+1} = \frac{x^{-1}}{-1} = \frac{-1}{x}$

[Inx = log x]

[Judy = ut - [vdu]

$$\frac{\left(\ln x\right)^{2} dx}{x^{2}} = \int \frac{\left(\log x\right)^{2} dx}{x^{2}} dx$$

$$= \left(\log x\right)^{2} \cdot \frac{-1}{x} - \int \frac{-1}{x} \cdot 2\log x \cdot \frac{1}{x} dx$$

$$= -\frac{1}{x} \left(\log x\right)^{2} + 2\int \frac{\log x}{x^{2}} dx$$

$$dv = \frac{dx}{x^2} = x^{-2} dx$$

$$du = \frac{1}{x} dx$$

$$v = -\frac{1}{x}$$

Judy=ut-Jodu

Bernoulli's formula: Judy = uv - u'+, + u"v2 - · · ·

$$\int \frac{(\ln x)^{2}}{x^{2}} dx = -\frac{1}{x} (\log x)^{2} + 2 \left[\log x \cdot -\frac{1}{x} - \int -\frac{1}{x} \cdot \frac{1}{x} dx \right]$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \int \frac{dx}{x^{2}}$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \int x^{-2} dx$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-2+1}}{-2+1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-1}}{-2+1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x + 2 \left(\frac{x^{-1}}{-1} \right) + c$$

$$= -\frac{1}{x} (\log x)^{2} - \frac{2}{x} \log x - \frac{2}{x} + c$$

(N20) Evaluate Jeax cosbxdx using integration by parts.

$$\frac{30!}{du = e^{ax}} \qquad dv = \frac{ax}{b} \qquad \int u dv = uv - \int v du$$

$$du = e^{ax} \cdot a dx \qquad v = \frac{\sin bx}{b}$$

Let
$$\hat{I} = \int e^{ax} \cos bx dx = e^{ax} \frac{\sin bx}{b} - \int \frac{\sin bx}{b} e^{ax} a dx$$

$$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx dx$$

$$u = e^{ax} a dx$$

$$dv = \sin bx dx$$

$$du = e^{ax} a dx$$

$$v = -\cos bx$$

$$\therefore 2 = \frac{1}{b} e^{ax} \sinh x - \frac{a}{b} \left[-e^{ax} \frac{\cosh x}{b} - \int -\frac{\cosh x}{b} e^{ax} a dx \right]$$

$$\hat{I} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x - \frac{a^2}{b^2} \int e^{ax} \cosh x \, dx$$

$$\hat{I} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x - \frac{a^2}{b^2} \hat{I}$$

$$\hat{1} + \frac{a^2}{b^2} \hat{1} = \frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x$$

$$\widehat{I}\left(1+\frac{a^2}{b^2}\right) = \frac{1}{b}e^{ax}\sinh x + \frac{a}{b^2}e^{ax}\cosh x$$

$$\hat{l} = \frac{b^2}{a^2 + b^2} \left(\frac{1}{b} e^{ax} \sinh x + \frac{a}{b^2} e^{ax} \cosh x \right)$$

$$u=e^{x}$$
 $dv=\sin x dx$

$$du=e^{x} dx \qquad v=-\cos x$$

Sudv=uv-Jodu

Let I = Jexsinxdx = ex(-coxx) - J-coxx exdx = -exconx+ Jexconxdx

$$du = e^{x} dx$$

$$dv = cos x dx$$

$$du = e^{x} dx$$

$$v = sin x$$

: 2 = -excosx+ [exsinx-]sinxexdx] = -excopx+exsinx-Jexsinxdx

 $\therefore \int = -e^{x} \cos x + e^{x} \sin x - \int$

 $2\hat{J} = -e^{\chi}\cos\chi + e^{\chi}\sin\chi \implies \hat{I} = \frac{1}{2}e^{\chi}\left(\sin\chi - \cos\chi\right) + C$

(H.W) Evaluate Seax sinbxdx using integration by parts.

@ Evaluate Jexcosxdx using integration by parts.

(22) Establish a reduction formula for In=Jsin"xdx. Hence find Jsin"xdx.

301: Given In= I sinn x dx - 1 = J sin^-1 x sinxdx

$$= \int \sin^{n-1}x \sin x \, dx$$

$$= \int \sin^{n-1}x \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = \sin x \, dx$$

$$\int u \, dy = u \, dy = u \, dy$$

$$\int u \, dy$$

$$\int$$

 $\therefore 2n = \sin^{n-1}x \left(-\cos x\right) - \int (-\cos x) \left(n-i\right) \sin^{n-2}x \cos x \, dx$ = $-\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x\cos^2x dx$ = $-8in^{N-1}x\cos x + (n-1)\int sin^{N-2}x (1-sin^2x)dx$ (: $sin^2x + \cos^2x = 1$)

 $=-\beta i n^{n-1} \pi \cos x + (n-i) \int (\sin^{n-2} x - \sin^n x) dx$

= $-\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x dx - (n-1)\int \sin^{n}x dx$

$$\frac{1}{\ln x} = -\sin^{n-1}x \cos x + (n-1) \frac{1}{2n-2} - (n-1) \frac{1}{2n} \qquad (1 - \log x)$$

$$\frac{1}{\ln x} + (n-1) \frac{1}{2n} = -\sin^{n-1}x \cos x + (n-1) \frac{1}{2n-2}$$

$$\frac{1}{\ln (1 + n-1)} = -\sin^{n-1}x \cos x + (n-1) \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{n-1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{n-1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{n-1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \frac{1}{2n-2}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \sin^{n-2}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \sin^{n-2}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \sin^{n-2}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \sin^{n-2}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \sin^{n-2}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x} \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln x} \sin^{n-1}x \cos x + \frac{1}{\ln x}$$

$$\frac{1}{\ln x} = -\frac{1}{\ln$$

 $\frac{1}{n} = \begin{cases} \frac{n-1}{n}, \frac{n-3}{n-2}, \frac{n-5}{n-4}, \dots, \frac{1}{2}, \frac{\pi}{2} \end{cases}$ if n is even

 $\left[\frac{N-1}{n}, \frac{N-3}{n-2}, \frac{N-5}{n-4}, \dots, \frac{2}{3}, 1\right] \xrightarrow{1} n$ is odd

$$\begin{array}{c}
\textcircled{2} \Rightarrow \overleftarrow{\lambda}_{2} = \frac{2-1}{2} \overleftarrow{)}_{0} \\
\overleftarrow{\lambda}_{2} = \frac{1}{2} \overleftarrow{)}_{0} \\
\textcircled{2} \Rightarrow \overleftarrow{\lambda}_{3} = \frac{3-1}{3} \overleftarrow{\lambda}_{3-2} \\
\overleftarrow{\lambda}_{3} = \frac{2}{3} \overleftarrow{\lambda}_{1}
\end{array}$$

(23) Establish a reduction formula for In=Josnada. Hence find Josnada. 301: Given In= Jessmada - 1 = [cox n-1x coxxdx dr=corrdx u= cos 2 $du = (n-1)\cos^{(n-2)}x(\sin x)dx \qquad \forall = \sin x$ $\frac{1}{n} = \cos^{n-1} x \sin x - \int \sin x (n-1) \cos^{n-2} x (-\sin x) dx$ = cos n-1 x sinx + (n-1) [cos n-2 x sin2x dx $= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x (1 - \cos^2 x) dx$ = cosn-1x sinx + (n-1) 5cosn-2xdx = (n-1) 5cosnxdx $2n = \cos^{n-1} x \sin x + (n-1) \sum_{n-2} - (n-1) \sum_{n} n$ $2n + (n-1)2n = cos^{n-1}x sinx + (n-1)2n-2$ În (1+n-1)=1000 n-1 x sinx + (n-1) În-2 :. NÎn = cox n-1 x sinx+ (n-1) În-2 $2n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \sum_{n=2}^{\infty}$ $\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$ Jo = Swaxdx = Jdx = x+c $2 = \int \cos x \, dx = \sin x + c$ Now consider, $I_n = \int_{-\infty}^{\pi/2} \cos^n x \, dx$ $I_n = \left(\frac{1}{n} \cos^{n-1} x \sin x\right)^{\pi/2} + \frac{n-1}{n} \int_{-\infty}^{\infty} \cos^{n-2} x \, dx$ $=0+\frac{N-1}{n}\sum_{n-2}$ $\frac{1}{2} - \frac{1}{2} n = \frac{n-1}{2} \frac{1}{2} n - 2$ $-1.2n = \frac{n-1}{n}, \frac{n-3}{n-2}, \frac{n-5}{n-4}, \dots \frac{1}{2}.I_0$ $\sum_{n-2} = \frac{n-2-1}{n-2} \sum_{n-2-2} = \frac{n-3}{n-2} \sum_{n-4}$ if n is even $\sum_{n-4} = \frac{n-2-1}{n-4} \cdot \frac{1}{n-4} - \frac{2}{n-4} = \frac{n-5}{n-4} \cdot \frac{1}{n-4} - \frac{2}{n-4} \cdot \frac{2}{n-4} \cdot$

$$\frac{1}{10} = \int_{0}^{\pi/2} \cos^{3}x \, dx = \int_{0}^{\pi/2} dx = (\pi)_{0}^{\pi/2} = \frac{\pi}{2}$$

$$\frac{1}{1} = \int_{0}^{\pi/2} \cos x \, dx = (\sin \pi)_{0}^{\pi/2} = \sin \pi/2 - \sin 0 = 1 - 0 = 1$$

$$\frac{1}{10} = \int_{0}^{\pi/2} \cos x \, dx = (\sin \pi)_{0}^{\pi/2} = \sin \pi/2 - \sin 0 = 1 - 0 = 1$$

$$\frac{1}{10} = \int_{0}^{\pi/2} \cos x \, dx = (\sin \pi)_{0}^{\pi/2} = \sin \pi/2 - \sin \pi/2$$

Sol: We know that
$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

(i)
$$\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x + \frac{3-1}{3} \int \sin x \, dx$$
 (Here $n = 3$)
= $-\frac{1}{3} \sin^2 x \cos x + \frac{2}{3} (-\cos x) + C$

$$-\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + c$$

$$= \frac{1}{4} \sin^3 x \cos 5x - \frac{3}{16} \sin 2x + \frac{3}{8} x + C$$

$$W_{2} = \begin{cases} \frac{N-1}{N} \cdot \frac{N-3}{N-2} \cdot \frac{N-5}{N-4} \cdots \frac{1}{2} & \frac{11}{2} & \frac{1}{2} & \frac{1$$

$$\int_{0}^{\pi/2} \sin^{7}x \, dx = \frac{7-1}{7} \cdot \frac{7-3}{7-2} \cdot \frac{7-5}{7-4} \cdot 1 = \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} \times 1 = \frac{16}{35}$$

(iv)
$$\int_{0}^{\pi/2} \sin^{8}x \, dx = \frac{7}{8} \times \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2} = \frac{35}{256} \pi$$
(Here $n = 8 \Rightarrow \text{even}$)

(v)
$$\int \sin^{2n} x dx = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \cdot \cdot \cdot \frac{1}{2} \frac{\pi}{2}$$
 (Here $2n$ is even)

Sol: We know that
$$\int_{0}^{\pi/2} \cos^{n}x \, dx = \int_{0}^{\pi-1} \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{1}{4} \cdot n \text{ is even}$$

$$\left(\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \dots \cdot \frac{2}{3} \cdot 1 \cdot \frac{1}{4} \cdot n \text{ is odd}\right)$$

Here n= 5. .. n is odd.

$$\int_{0}^{\pi/2} \cos^{5}x \, dx = \frac{4}{5} \times \frac{2}{3} \times 1 = \frac{8}{15}$$

(26) Find the reduction formula for Josephada, n > 2 is an integer.

Let
$$I_n = \int sec^n x dx = \int sec^{n-2} x sec^{\frac{1}{2}} x dx$$

$$u = sec^{n-2} x$$

$$du = (n-2) sec^{n-3} x (secxtanx) dx$$

$$v = tanx$$

$$u = sec^{n-3} x (secxtanx) dx$$

$$v = tanx$$

=
$$\sec \left(\frac{x \cdot \tan x}{x \cdot \tan x} - \left(\frac{n-2}{x} \right) \right) \sec \left(\frac{n-2}{x} \cdot \left(\frac{x \cdot \cot^2 x}{x \cdot \cot^2 x} - 1 \right) dx$$

$$I_{n}(1+n-2) = sec^{n-2} \sqrt{a_{n}x + (n-2)^{2}n-2}$$

$$2n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} 2n-2$$

27 Find the reduction formula for Josephada, nzz is an integer. 301: Let In= Josephada = Josephada = Josephada

 $du = (n-2)\cos^{n-2}x$ $du = (n-2)\cos^{n-3}x \left(-\cos^{n}x \cot^{n}x\right) dx$ $dv = \cos^{n}x dx$

 $\therefore 2_{n} = \cos x e^{n-2} \times (-\cot x) - \int (-\cot x) (n-2) \cos x e^{n-3} \times (-\cos x \cot x) dx$ $= -\cos x e^{n-2} \times \cot x - (n-2) \int \cos x e^{n-2} \times \cot^{2} x dx$ $= -\cos x e^{n-2} \times \cot x - (n-2) \int \cos x e^{n-2} \times (\cos x e^{2} x - 1) dx$

= - cosec n-2 x cot x - (n-2) $\int cosec n x dx + <math>(n-2)$ $\int cosec n^{-2} x dx$

2n = -cosec n-2 x cot x - (n-2) In + (n-2) 2n-2

2n(1+n-2) = -cosec 2x cotx+(n-2)2n-2

 $2n = \frac{-1}{N-1} \cos 2 \left(\frac{N-2}{N} \cos 2 \right) + \frac{N-2}{N-1} \sin 2 n - 2$

. To = J cosec xdx = Jdx = x+c

2, = J cosecxdx = log(cosecx-cotx)+c

28) Find the reduction formula for Stannada.

Sol: Let In= Stan x dx = Stan n-2 x lan x dx

= Stan N-2x (sec2x-1) dx

= Stann-2x sec2xdx - Stann-2xdx

= \int u^{n-2} du - \int tan^{n-2} \times dx

 $= \frac{u^{n-2+1}}{n-2+1} - \frac{1}{2}n-2 = \frac{u^{n-1}}{n-1} - \frac{1}{2}n-2$

 $2n = \frac{\tan^{n-1}x}{n-1} - 2n-2$

To = Stanoxdx = Sdx = x+c

I, = Stanxdx = log(secx)+C

Put u=tanx du=sec2xdx

Put u= cotx

du=-copec2xdx

-du = cosec2xdx

$$= \int \omega t^{n-2} \times \omega t^{2} \times dx = \int \omega t^{n-2} \times (\omega s e^{2} x - 1) dx$$

$$= \int \omega t^{n-2} \times \omega s e^{2} \times dx - \int \omega t^{n-2} \times dx$$

$$= \int u^{n-2} (-du) - \overline{l}_{n-2}$$

$$= -\left[\frac{u^{n-2+1}}{n-2+1}\right] - \hat{1}_{n-2}$$

$$= -\frac{u^{n-1}}{n-1} - \frac{1}{2}n-2 = -\frac{\cot^{n-1}x}{n-1} - \frac{1}{2}n-2$$

:
$$\frac{1}{2}n = -\frac{\cot^{n-1}x}{n-1} - \frac{1}{2}n-2$$

$$I_1 = \int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \log(\sin x) + c$$

(30 Evaluate: Isin x cos xdx.

$$du = \cos x dx$$

$$\therefore \hat{I} = \int u^{b} (1 - u^{2}) du = \int (u^{b} - u^{g}) du = \left(\frac{u^{7}}{7} - \frac{u^{9}}{9}\right) + C$$

$$= \frac{\sin^2 x}{7} - \frac{\sin^2 x}{9} + c$$

(31) Evaluate: Soin x con xdx.

Evaluate:
$$\int \sin^2 x \cos^2 x dx = \int \sin^4 x \cos^2 x \sin^2 x dx$$

$$= \int (1 - \cos^2 x)^2 \cos^2 x \sin^2 x dx$$

$$du = -sin x dx \Rightarrow -du = sin x dx$$

$$\therefore \underline{1} = \int (1-u^2)^2 u^2 (-du) = -\int (1+u^4-2u^2) u^2 du = -\int (u^2+u^5-2u^4) du$$

$$= -\left(\frac{u^3}{3} + \frac{u^7}{7} - \frac{2u^5}{5}\right) + c = -\frac{\cos^3 x}{3} = \frac{\cos^7 x}{7} + \frac{2\cos^5 x}{5} + c$$

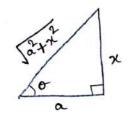
(32) Evaluate: Josen sin 2xdx. 301: Let I = Jose x sinex dx = Jose x 2 sinx cosx dx = $2\int \cos^3 x \sin x \, dx$ (: $\sin 2x = 2\sin x \cos x$) du=-sinxdx => sinxdx = -du $\therefore 1 = 2 \int u^3 (-du) = -2 \int u^3 du = -2 \left(\frac{u^4}{4} \right) + c = \frac{-1}{2} \cos^4 x + c$ 33 Evaluate: Jsin'x costx dx Sol: Let $\tilde{I} = \int \sin^2 x \cos^4 x dx = \int \left(\frac{1 - \cos 2x}{2}\right) \left(\frac{1 + \cos 2x}{2}\right)^2 dx$ = = 1 (1-cosex) (1+cos2x+2cos2x) dx $= \frac{1}{8} \int \left(1 + \cos^2 2x + 2\cos 2x - \cos 2x - \cos^2 2x - 2\cos^2 2x \right) dx$ $= \frac{1}{8} \int_{0}^{1} \left(1 - \cos^{2} 2x + \cos 2x - \cos^{2} 2x \right) dx - 0$ $\int \cos^2 2x \, dx = \int \left(\frac{1 + \cos 4x}{2} \right) dx = \frac{1}{2} \left(x + \frac{\sin 4x}{4} \right)$ $\int \cos^3 2x \, dx = \int \cos^2 2x \cos 2x \, dx = \int (1 - \sin^2 2x) \cos 2x \, dx$ $du = 2\cos 2x dx \Rightarrow \cos 2x dx = \frac{du}{2}$

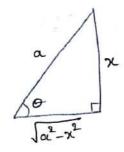
 $\int_{\cos^3 2x \, dx} = \int_{\cos^3 2x \, dx} = \int_{\cos^3 2x \, dx} \left(1 - u^2 \right) \frac{du}{2} = \frac{1}{2} \left(u - \frac{u^3}{3} \right) = \frac{1}{2} \left(\sin 2x - \frac{\sin^3 2x}{3} \right)$

 $\therefore \hat{I} = \frac{1}{8} \left[x - \frac{1}{2}x - \frac{1}{8}\sin 4x + \frac{\sin 2x}{2} - \frac{1}{2}\sin 2x + \frac{1}{6}\sin^3 2x \right]_0^T$ $= \frac{1}{8} \left[\frac{1}{2} x - \frac{1}{8} \sin 4x + \frac{1}{6} \sin^3 2x \right]_0^{T}$

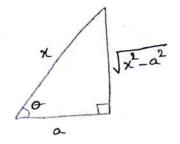
 $=\frac{1}{2}\left[\frac{\pi}{2}\right]=\frac{\pi}{16}$

Trigonometric substitution:





$$sin \theta = \frac{\chi}{a}$$



$$\cos \theta = \frac{a}{x}$$

$$X = \frac{\alpha}{\cos \theta} = \alpha \sec \theta$$

(34) Evaluate
$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$
.

301: Put x=asino. Here a=3

$$\therefore \int \frac{x^2}{\sqrt{9-x^2}} dx = \int \frac{(3 \sin \theta)^2}{\sqrt{9-(3 \sin \theta)^2}} 3\cos \theta d\theta$$

$$x = asin \theta$$

 $\theta = sin^{-1} \begin{pmatrix} x_{/a} \end{pmatrix}$
 $\theta = sin^{-1} \begin{pmatrix} x_{/3} \end{pmatrix}$

$$a = x$$

$$\int_{a}^{2} -x^{2}$$

$$sin\theta = \frac{x}{a} = \frac{x}{3}$$

$$cos\theta = \int_{a}^{2} -x^{2} = \frac{9-x^{2}}{3}$$

$$= \int \frac{9 \sin^2 \theta}{\sqrt{9 - 9 \sin^2 \theta}} 3 \cos \theta d\theta = 9 \int \frac{\sin^2 \theta}{3 \sqrt{1 - \sin^2 \theta}} 3 \cos \theta d\theta$$

$$= 9 \int \frac{\sin^2 \theta}{\cos \theta} \cos \theta d\theta = 9 \int \sin^2 \theta d\theta = 9 \int \left(\frac{1 - \cos 2\theta}{2}\right) d\theta$$

$$=\frac{9}{2}\left[\theta-\frac{8in2\theta}{2}\right]+c=\frac{9}{2}\left[\theta-\frac{25in\theta\cos\theta}{2}\right]+c$$

$$=\frac{9}{2}\left[0-\sin\theta\cos\theta\right]+c$$

$$= \frac{9}{2} \left[sin^{-1} \left(\frac{x}{3} \right) - \frac{x}{3} \sqrt{\frac{9-x^2}{3}} \right] + c$$

$$= \frac{9}{2} \sin^{-1} \left(\frac{x}{3} \right) - \frac{1}{2} x \sqrt{9 - x^2} + c$$

(35) Evaluate Stand du by using substitution rule.

301: Pil x=asino > 0=sin-1 (%)

:
$$\int \int_{a-x}^{2} dx = \int \int_{a}^{2} -(asino)^{2} a cosodo$$

$$= \int \int_{a-a}^{2} -a sin^{2} o a cosodo$$

$$= a^2 \int \int -\sin^2 \theta \cos \theta d\theta = a^2 \int \cos^2 \theta d\theta$$

$$=\frac{a^2}{2}\left[0+\frac{\sin 2\theta}{2}\right]+c$$

$$=\frac{a^2}{2}+\frac{a^2}{4}\left(2\sin\theta\cos\theta\right)+c$$

$$=\frac{a^2}{2}$$
 0+ $\frac{a^2}{2}$ sino coso + c

$$=\frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right)+\frac{a^2}{2}\frac{x}{a}\sqrt{\frac{a^2-x^2}{a}}+c$$

$$=\frac{\alpha^2}{2}\sin^{-1}\left(\frac{x}{\alpha}\right)+\frac{x}{2}\sqrt{\alpha^2-x^2}+C$$

Sol: Consider,
$$3-2x-x^2=-(x^2+2x)+3$$

$$=-(x^2+2x+1-1)+3$$

$$=-[(x+1)^2-1]+3$$

$$=-(x+1)^2+1+3=4-(x+1)^2$$

$$\int \frac{x}{\sqrt{3-2x-x^2}} dx = \int \frac{u-1}{\sqrt{4-u^2}} du$$

Put u=asino, Here a=2

$$u = 2 \sin \phi \Rightarrow \theta = \sin^{-1} \frac{u}{2}$$

$$du = 2 \cos \phi - d\phi$$

$$\therefore \int \frac{2}{\sqrt{3-2x-x^2}} dx = \int \frac{u-1}{\sqrt{4-u^2}} du$$

$$= \int \frac{2\sin\theta-1}{\sqrt{4-4\sin^2\theta}} 2\cos\theta d\theta$$

$$\frac{a}{\sqrt{a^2-u^2}}$$

$$\frac{a^2-u^2}{a} = \sqrt{4-u^2}$$

$$\frac{a^2-u^2}{a} = \sqrt{4-u^2}$$

$$=\int \frac{2\sin\theta-1}{2\cos\theta} = \int (2\sin\theta-1)d\theta$$

$$= -2 \sqrt{\frac{4 - u^2}{2}} - sin^{-1} \frac{u}{2} + C$$

$$= -\sqrt{4 - (x+1)^2} - 3in^{-1} \left(\frac{x+1}{2}\right) + C$$

$$= -\sqrt{4 - x^2 - 1 + 2x} - sin^{-1} \left(\frac{x+1}{2} \right) + c$$

$$=-\sqrt{3-x^2-2x}-sin^{-1}\left(\frac{x+1}{2}\right)+c$$

(37) Evaluate \(\frac{9}{2} \) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \

$$\frac{30!}{\sqrt[3]{3}} \frac{dx}{\sqrt[3]{5} \sqrt{9(x^2 - \frac{1}{9})}} = \frac{1}{3} \int_{\sqrt[3]{2}/3}^{\frac{2}{3}} \frac{dx}{x^5 \sqrt{x^2 - (\frac{1}{3})^2}} = \frac{1}{3} \left(\frac{3}{3} \right)$$

Put x=aseco

Here a = 1/3. x = 1/3 seco dx = 1/2 secotano do

When
$$x = \frac{2}{3} \Rightarrow \frac{2}{3} = \frac{1}{3} \sec \theta$$

$$\Rightarrow \frac{2}{3} \times 3 = \frac{1}{\cos \theta} \Rightarrow \frac{\cos \theta}{2} \Rightarrow \frac{1}{3} \Rightarrow$$

$$= 81 \int_{0}^{2} \cos^{4}\theta \, d\theta = 81 \int_{0}^{2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$

When
$$x = \sqrt{\frac{2}{3}} \Rightarrow \sqrt{\frac{2}{3}} = \frac{1}{3} \sec \theta$$

$$\Rightarrow \sqrt{\frac{2}{3}} \times 3 = \frac{1}{\cos \theta} \Rightarrow \cos \theta = \sqrt{\frac{2}{3}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(1 + \cos^{2}\theta\right)^{2} d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(1 + \cos^{4}\theta + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(1 + \frac{1 + \cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(1 + \frac{1}{2} + \frac{\cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\cos^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + 2\cos^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + 2\sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + 2\sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + \sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + \sin^{2}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{\sin^{4}\theta}{2} + \frac{3\sin^{4}\theta}{2} + \sin^{4}\theta\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3}{2} + \frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4} - \frac{3\pi}{4}\right) d\theta$$

$$= \frac{g_{1}}{4} \int_{1}^{\frac{\pi}{4}} \left(\frac{3\pi}{4} + \frac{3\pi}{4} - \frac{3\pi}{4}$$

(38) Evaluate
$$\int \frac{1}{x^2 \sqrt{x^2+4}} dx$$
.

Sol: Here
$$a=2$$

Put $x=atano \Rightarrow x=2tano$

$$dx=2sec^2odo$$

$$\therefore \int \frac{1}{x^2 \sqrt{x^2+4}} dx = \int \frac{1}{4tan^2o-\sqrt{4tan^2o+4}} 2sec^2odo$$

$$= \frac{1}{2} \int \frac{1}{\tan^2 \theta} \int \frac{1}{1 + \tan^2 \theta} d\theta$$

$$= \frac{1}{4} \int \frac{1}{\tan^2 \theta} \int \frac{1}{\sin^2 \theta} d\theta = \frac{1}{4} \int \frac{1}{\cos \theta} \int \frac{1}{\sin^2 \theta} d\theta$$

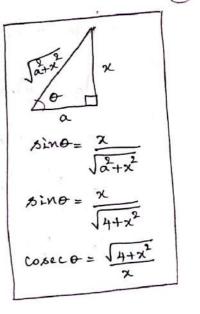
$$= \frac{1}{4} \int \frac{1}{\cos^2 \theta} d\theta = \frac{1}{4} \int \frac{1}{\cos \theta} \int \frac{1}{\sin^2 \theta} d\theta$$

$$= \frac{1}{4} \int \frac{\cos \theta}{\sin^2 \theta} d\theta = \frac{1}{4} \int \cos \theta \cos \theta d\theta$$

$$= -\frac{1}{4} \int \cos \theta \cos \theta + C$$

$$= -\frac{1}{4} \int \cos \theta \cos \theta + C$$

$$= -\frac{1}{4} \int \frac{1}{\cos^2 \theta} d\theta \cos \theta \cos \theta$$



Integration of rational functions by partial traction: Evaluate Just Sinx conx dx.

Sol: Put u=cosx du=-sinxdx => sinxdx = -du

$$du = -\sin x dx \Rightarrow \sin x dx = -du$$

$$I = \int_{0}^{2} \frac{\sin x \cos x}{\cos x + 3\cos x + 2} dx = \int_{0}^{2} \frac{u(-du)}{u^{2} + 3u + 2}$$

$$= -\int_{0}^{2} \frac{u du}{(u+1)(u+2)} = \int_{0}^{2} \frac{u du}{(u+1)(u+2)}$$

When
$$x = \sqrt[4]{2} \Rightarrow u = \cos \sqrt[4]{2} = 0$$

$$x = 0 \Rightarrow u = \cos 0 = 1$$

$$x + \frac{2 + 3}{1 + 2}$$

$$u + 1 + 2$$

Consider,
$$\frac{u}{(u+1)(u+2)} = \frac{A}{u+1} + \frac{B}{u+2} = \frac{A(u+2) + B(u+1)}{(u+2)}$$

$$P_{u} + u = -2$$

$$-2 = -B \Rightarrow B = 2$$

$$-1 = A$$

$$\frac{u}{(u+1)(u+2)} = \frac{-1}{u+1} + \frac{2}{u+2}$$

$$= \left(-\log(u+1) + 2\log(u+2)\right)^{1}$$

$$= -\log 2 + 2\log 3 + \log 1 - 2\log 2$$

$$= -3\log 2 + 2\log 3 = \log(2)^{-3} + \log(3)^{2}$$

$$= \log \frac{1}{2^{3}} + \log 9 = \log \frac{1}{8} + \log 9$$

$$= \log \left(\frac{1}{8} \times 9\right) = \log \frac{9}{8}$$

(40) Evaluate
$$\int \frac{x^2+1}{(x-3)(x-2)^2} dx.$$

Sol: Consider,
$$\frac{x+1}{(x-3)(x-2)^2} = \frac{A}{x-3} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$\chi^{2}_{+1} = A(x-2)^{2} + B(x-3)(x-2) + c(x-3)$$

$$\frac{x^{2}+1}{(x-3)(x-2)^{2}} = \frac{10}{x-3} - \frac{9}{x-2} - \frac{5}{(x-2)^{2}}$$

$$\int \frac{x^{2}+1}{(x-3)(x-2)^{2}} dx = 10 \int \frac{dx}{x-3} - 9 \int \frac{dx}{x-2} - 5 \int \frac{dx}{(x-2)^{2}}$$

$$= 10 \log(x-3) - 9 \log(x-2) - 5 \int (x-2)^{-2} dx$$

$$= 10 \log(x-3) - 9 \log(x-2) - 5 \int \frac{(x-2)^{-2}+1}{(x-2)^{-2}+1} dx$$

$$= 10 \log(x-3) - 9 \log(x-2) + 5 \frac{1}{x-2} + C$$

(4) Evaluate
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx.$$

Sol: Consider,
$$\frac{2x^2-x+4}{x^3+4x} = \frac{2x^2-x+4}{x(x^2+4)} = \frac{A}{x} + \frac{Bx+C}{x^2+4}$$

Put
$$x=0$$

 $4=4A \Rightarrow A=1$

$$\frac{\text{Put } x = -1}{2 + 1 + 4} = 5A - (B(-1) + c)$$

$$7 = 5 + B - c$$

$$\int \frac{2x^{2}-x+4}{x^{3}+4x} dx = \int \frac{1}{x} dx + \int \frac{x-1}{x^{2}+4} dx$$

$$= \log_{x} + \int \frac{x}{x^{2}+4} dx - \int \frac{dx}{x^{2}+4}$$

$$= \log_{x} + \int \frac{du/2}{u} - \frac{1}{2} \tan^{-1} \frac{x}{2}$$

$$= \log_{x} + \frac{1}{2} \log_{u} - \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

$$= \log_{x} + \frac{1}{2} \log_{u} (x^{2}+4) - \frac{1}{2} \tan^{-1} \frac{x}{2} + c$$

$$Paf x^{2} + 4 = u$$

$$2x dx = du$$

$$x dx = \frac{du}{2}$$

(12) Evaluate | x dx.

$$\begin{array}{c|c}
x-2 \\
x^2 \\
x^2 + 2x \\
(-)(-) \\
-2x \\
-2x - 4 \\
(+) & (+)
\end{array}$$

$$\frac{\chi^2}{\chi+2} = \chi-2+\frac{4}{\chi+2}$$

Paraluate
$$\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$$
.

$$2x+5=A(2x-2)+B \Rightarrow 2x+5=2Ax-2A+B$$

Equaling like coefficients, we get $2=2A \Rightarrow \overline{A}=1$

$$5 = -2A + B \implies 5 = -2 + B \implies B = 7$$

$$\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx = \int \frac{2x-2}{\sqrt{x^2-2x+10}} dx + \int \frac{7}{\sqrt{x^2-2x+10}} dx$$

$$= \int \frac{du}{\sqrt{u}} + 7 \int \frac{dx}{\sqrt{x^2 - 2x + 1 - 1 + 10}}$$

$$= \int u^{-1/2} du + 7 \int \frac{dx}{\sqrt{(x-1)^2+9}}$$

$$= \frac{u^{-1/2+1}}{-1/2+1} + 7 \int \frac{dt}{\sqrt{t^2+3^2}}$$

=
$$\frac{u^{\frac{1}{2}}}{\frac{1}{2}} + 7 \sinh^{-1} \frac{1}{3} + c$$

=
$$2\sqrt{\frac{2}{x^2-2x+10}} + 7 \sinh^{-1}\left(\frac{x-1}{3}\right) + C$$

Put
$$u = x^2 - 2x + 10$$

 $du = (2x - 2) dx$

Put
$$t=x-1$$
 $dt=dx$

$$\int \frac{dx}{\sqrt{\alpha^2 - x^2}} = \sin^{-1} \frac{x}{\alpha} + c$$

$$\int \frac{dx}{\sqrt{x^2 + c}} = \cosh^{-1} \frac{x}{\alpha} + c$$

$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \sinh^{-1} \frac{x}{\alpha} + c$$

$$x = A(2x+1) + B \Rightarrow x = 2Ax + A + B$$

Equating like coefficients on both sides, we get

$$0 = A + B \Rightarrow 0 = \frac{1}{2} + B \Rightarrow B = -\frac{1}{2}$$

$$\frac{1}{\sqrt{x^{2}+x+1}} dx = \frac{1}{2} \int \frac{2x+1}{\sqrt{x^{2}+x+1}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+x+1}}$$

$$= \frac{1}{2} \int \frac{du}{\sqrt{u}} - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+2 \cdot \frac{1}{2}x + \frac{1}{4}} - \frac{1}{4} + 1}$$

$$= \frac{1}{2} \int u^{-\frac{1}{2}} du - \frac{1}{2} \int \frac{dx}{\sqrt{(x+\frac{1}{2})^{2} + \frac{3}{4}}}$$

$$= \frac{1}{2} \frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} - \frac{1}{2} \int \frac{dt}{\sqrt{t^{2}+(\frac{\sqrt{3}}{2})^{2}}}$$

$$= \frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}} - \frac{1}{2} \sinh^{-1} \frac{t}{\sqrt{3}/2}$$

$$= \sqrt{x^{2}+x+1}} - \frac{1}{2} \sinh^{-1} \left(\frac{t}{\sqrt{3}}(x+\frac{1}{2})\right) + c$$

Put t= x+/2 dt=dx

Put u=x+x+1

du=(x+1)dx

(A) Evaluate $\int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}}$ & determine whether it is convergent or divergent.

$$\frac{50!}{3} \frac{\partial x}{(x-2)^{3/2}} = \lim_{t \to \infty} \int_{3}^{t} \frac{dx}{(x-2)^{3/2}} = \lim_{t \to \infty} \int_{3}^{t} (x-2)^{-3/2} dx$$

$$= \lim_{t \to \infty} \left[\frac{(x-2)^{-3/2+1}}{-3/2+1} \right]_{3}^{t} = \lim_{t \to \infty} \left[\frac{(x-2)^{-1/2}}{-1/2} \right]_{3}^{t}$$

$$= \lim_{t \to \infty} \left[-2 \frac{1}{\sqrt{x-2}} \right]_{3}^{t} = \lim_{t \to \infty} \left[\frac{-2}{\sqrt{t-2}} + \frac{2}{\sqrt{1}} \right]$$

$$= \frac{-2}{\infty} + 2 = 0 + 2 = 2$$

 $\therefore \int_{3}^{\infty} \frac{dx}{(x-2)^{3/2}}$ is convergent.

(A) Evaluate $\int_{4}^{\infty} \frac{1}{\sqrt{x}} dx$ à delermine whether it is convergent or divergent. Sol: $\int_{4}^{\infty} \frac{1}{\sqrt{x}} dx = \lim_{t \to \infty} \int_{4}^{t} \frac{x^{-1/2+1}}{x^{-1/2+1}} \int_{4}^{t} \frac{1}{\sqrt{x}} dx = \lim_{t \to \infty} \left[\frac{x^{-1/2+1}}{\sqrt{x}} \right]_{4}^{t} = \lim_{t \to \infty} \left[\frac{x^{-1/2+1}}{\sqrt{x}} \right]_{4}^{t} = \lim_{t \to \infty} \left[2\sqrt{x} \right]_{4}^{t} = \lim_{t \to \infty} \left[2\sqrt{t} - 2\sqrt{t} \right]_{4}^{t}$ $= \lim_{t \to \infty} \left[2\sqrt{t} - 4 \right] = \infty - 4 = \infty$

Determine whether the given integral $\int_{e}^{\infty} x dx$ is convergent or divergent. $\frac{20!}{10!} \int_{e}^{\infty} x dx = \lim_{t \to \infty} \int_{e}^{\infty} x dx = \lim_{t \to \infty} (e^{x}) = \lim_{t \to \infty} (e^{t} - e^{0})$ $= \lim_{t \to \infty} (e^{t} - 1) = e^{\infty} - 1 = \infty - 1 = \infty$

: Jexdx is divergent.

(48) For what values of p is 5 1 xp dx convergent?

$$\frac{\partial d}{\partial t} = \frac{1}{4} p \neq 1,$$

$$\lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx = \lim_{t \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]_{1}^{t} = \lim_{t \to \infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]_{1}^{t} = \lim_{t \to \infty} \left[\frac{1}{x^{-p+1}} - \frac{1}{x^{-p+1}} \right]_{1}^{t}$$

$$= \lim_{t \to \infty} \left[\frac{1-b}{1-b} \left(f_{-}(b-1)^{-1} \right) \right] = \lim_{t \to \infty} \left[\frac{1-b}{1-b} \left(\frac{1}{t-1} - 1 \right) \right]$$

$$=\frac{1}{1-p}\left[\frac{1}{\infty}-1\right]=\frac{1}{1-p}\left[0-1\right]=\frac{-1}{1-p}=\frac{1}{p-1}$$
Rough
work

$$=\lim_{t\to\infty}\left[\frac{1}{p-1}\left(1-\frac{1}{t^{p-1}}\right)\right]$$

$$= \begin{cases} \frac{1}{p-1}, & p > 1, \text{ converges} \\ \infty, & p \leq 1, \text{ diverges} \end{cases}$$

Evaluate
$$\int_{1}^{2} \frac{1}{2} \frac{dx}{xy} = \int_{1}^{2} \frac{dx}{x} \frac{dy}{y} = \int_{1}^{2} (\log x) \frac{dy}{y}$$

$$= \int_{1}^{2} (\log b - \log 2) \frac{dy}{y}$$

$$= (\log b - \log 2) (\log y)_{1}^{2} = (\log b - \log 2) (\log a - \log 1)$$

$$= (\log b - \log 2) (\log a) = \log \left(\frac{b}{2}\right) \log a$$

$$\frac{50!}{5!} \int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y}\right) dx dy = \int_{0}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y}\right) (x)^{\frac{1}{3}} dy$$

$$= \int_{0}^{\infty} \left(\frac{e^{-\frac{1}{3}}}{y}\right) xy dy = \int_{0}^{\infty} e^{-\frac{1}{3}} dy$$

$$= \left(\frac{e^{-\frac{1}{3}}}{-1}\right)^{\infty} = -\left(e^{-\frac{1}{3}}\right)^{\infty} = -\left(e^{-\frac{1}{3}}\right)^{-\frac{1}{3}}$$

$$= -\left(e^{-\frac{1}{3}}\right)^{\infty} = -\left(e^{-\frac{1}{3}}\right)^{-\frac{1}{3}}$$

$$= -\left(e^{-\frac{1}{3}}\right)^{-\frac{1}{3}}$$

(AU) Evaluate I I extydxdy.

Evaluate
$$\int \int e^{x} dx dy$$
.

Line line $\int e^{x} dx dy = \int e^{x} e^{y} dx dy = \int (e^{x}) e^{y} dy$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} dy = \int (e^{x}) e^{y} dy$$

$$= \int (e^{x}) e^{y} d$$

=
$$\ln 8.8 - e - (e^{\ln 8} - e) - (8 - e)$$

= $8 \ln 8 - e - 8 + e - 8 + e = 8 \ln 8 + e - 16$

(N) (F) Evaluate
$$\int_{1}^{2} \int_{0}^{x^{2}} x dx dy$$

$$= \int_{1}^{2} \int_{0}^{x^{2}} x dx dy = \int_{1}^{2} \int_{0}^{x^{2}} x dy dx \quad (correct form)$$

$$= \int_{1}^{2} x (y)^{2} dx = \int_{1}^{2} x (x^{2} - 0) dx = \int_{1}^{2} x^{3} dx$$

$$= \left(\frac{x^{4}}{4}\right)^{2} = \frac{2^{4}}{4} - \frac{1}{4} = \frac{16}{4} - \frac{1}{4} = \frac{15}{4}$$

$$\frac{30!}{20} \sum_{y=1}^{20} \sum_{x=1}^{3} xyz \, dz \, dy \, dx = \int_{0}^{20} \sum_{x=1}^{3} xy \left(\frac{z^{2}}{2}\right)^{3} \, dy \, dx$$

$$= \int_{0}^{20} \sum_{y=1}^{3} xy \left(\frac{x^{2}}{2} - \frac{y^{4}}{4}\right)^{3} \, dy \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{y^{2}}{2} - \frac{y^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

$$= \frac{1}{2} \int_{0}^{20} x \left(\frac{x^{4}}{2} - \frac{x^{4}}{4}\right)^{3} \, dx$$

 $=\frac{1}{10}\left((2a)^{6}-0\right)=\frac{64a^{6}}{42}=\frac{4}{3}a^{6}$

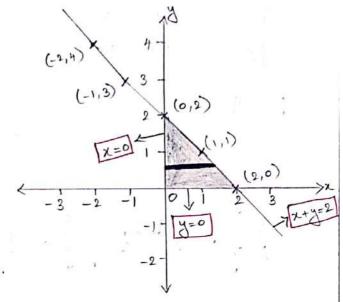
DFind The limits of integration II f(x,y) dxdy where R is the triangle

bounded by x=0, y=0, x+y=2.

301: Gliven x=0, y=0, x+y=2 x+y=2 => y=2-x

=	U		9		
ス:	-2	-1	0	17	2
4:	4	3	2	1	0

From the graph, we get



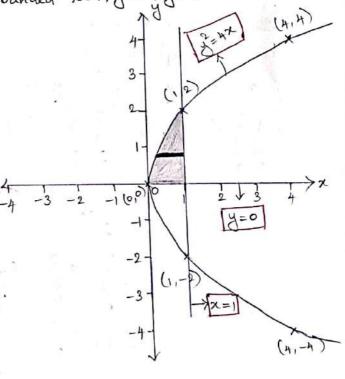
Find the lineits of integration in the double integral Ist(x, y) dxdy where R is in the first quadrant & bounded x=1, y=0, y=4x.

$$y^2 = 4x$$
 \Rightarrow $y = \pm \sqrt{4x} = \pm 2\sqrt{x}$

72:	0	1	4
7 :	0	±2	土井

From the graph, we get

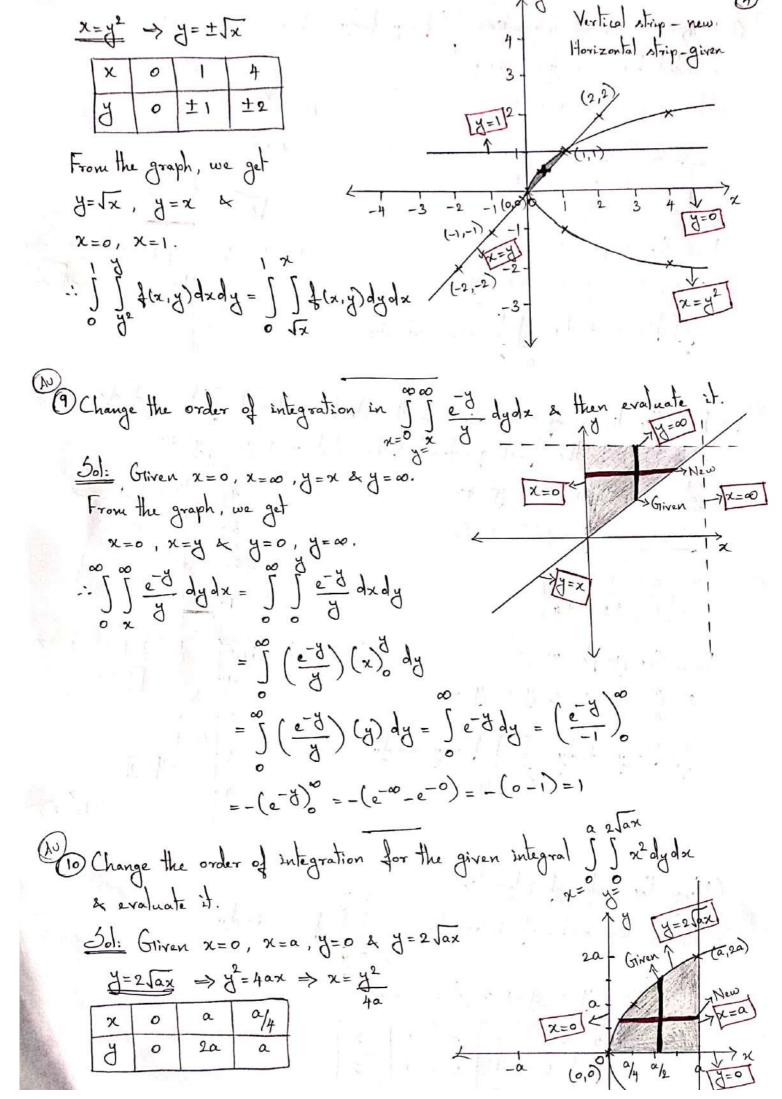
$$x = \frac{y^2}{4}$$
, $x = 1$ $x = 0$, $y = 2$



Change the order of integration:

(8) Change the order of integration in II f(x,y)dxdy.

501: Given y=0, y=1, x=y2 & x=y.



From the graph, we get

$$x = \frac{y^2}{4a}$$
, $x = a + y = 0$, $y = 2a$

$$\int_{0}^{2\sqrt{ax}} \int_{0}^{2\sqrt{a}} x^{2} dy dx = \int_{0}^{2a} \int_{0}^{a} x^{2} dx dy$$

$$= \int_{0}^{2a} \left(\frac{\chi^{3}}{3}\right)_{y^{2}}^{a} dy = \frac{1}{3} \left(a^{3} - \left(\frac{\chi^{2}}{4a}\right)^{3}\right) dy$$

$$= \frac{1}{3} \int_{0}^{2a} \left(a^{3} - \frac{y^{6}}{64a^{3}} \right) dy = \frac{1}{3} \left[a^{3}y - \frac{y^{7}}{7 \times 64a^{3}} \right]_{0}^{2a}$$

$$= \frac{1}{3} \left[a^{3}(2a) - \frac{(2a)^{7}}{7 \times 64a^{3}} \right]$$

$$=\frac{1}{3}\left[2a^{4}-\frac{2\times 64a^{7}}{7\times 64a^{3}}\right]=\frac{1}{3}\left[2a^{4}-\frac{2a^{4}}{7}\right]$$

$$= \frac{\alpha^{\frac{4}{3}} \left(2 - \frac{2}{7}\right) = \frac{\alpha^{\frac{4}{3}} \left(\frac{14 - 2}{7}\right) = \frac{\alpha^{\frac{4}{3}} \left(\frac{12}{7}\right) = \frac{4}{7} \alpha^{\frac{4}{3}}$$

Change the order of integration for the given integral $\int_{1}^{\infty} \int_{1}^{\infty} (x^{2}+y^{2}) dy dx$ & evaluate it.

Sol: Given
$$x=0, x=a, y=\frac{x}{a} + y=\sqrt{\frac{x}{a}}$$

$$\frac{y=\frac{x}{a}}{y} \quad \boxed{\begin{array}{c|cccc} x & o & a & 2a & -a & -2a \\ \hline y & o & 1 & 2 & -1 & -2 \end{array}}$$

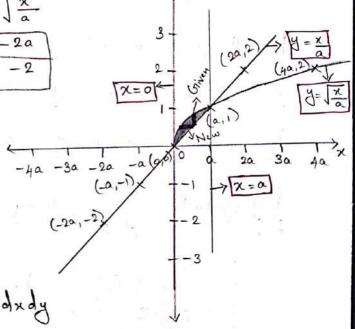
$$\begin{cases}
y = \sqrt{\frac{x}{a}} & x & 0 & a & 4a \\
y & 0 & 1 & 2
\end{cases}$$

From the graph, we have

$$y=0, y=1, x=ay^2 + x=ay$$

$$a\sqrt{x}$$

$$\int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2}) dy dx = \int_{0}^{2} \int_{0}^{2} (x^{2} + y^{2}) dx dy$$



$$= \int_{0}^{1} \left(\frac{x^{3}}{3} + xy^{2}\right)^{3} dy$$

$$= \int_{0}^{1} \left(\frac{a^{3}y^{3}}{3} + ayy^{2} - \frac{a^{3}y^{6}}{3} - ay^{4}y^{2}\right) dy$$

$$= \int_{0}^{1} \left(\frac{a^{3}y^{3}}{3} + ay^{3} - \frac{a^{3}y^{6}}{3} - ay^{4}\right) dy$$

$$= \left(\frac{a^{3}y^{4}}{12} - \frac{ay^{4}}{4} - \frac{a^{3}y^{7}}{21} - ay^{5}\right)^{3} = \frac{a^{3}}{12} - \frac{a}{4} - \frac{a^{3}}{21} - \frac{a}{5}$$

$$= a^{3} \left(\frac{1}{12} - \frac{1}{21}\right) - a\left(\frac{1}{4} + \frac{1}{5}\right) = \frac{a^{3}}{28} - \frac{9a}{20}$$

$$= \frac{a}{4} \left(\frac{a^{2}}{7} - \frac{9}{5}\right)$$

(12) Change the order of integration & hence evaluate \$\int_{\integral}^{2-\times} \pi ydydx.

= x2

אר א	-o, b	<=1,	y=x2	٠, ٢	7=2.
1 2	- 2	-1		, ,	2
18	4	1	0	1	4

y=2-x

x	-2	-1	0	١	2
3	4	3	2	1	0

From the graph, we get

$$\hat{L}_{2}$$
: $\chi = 0$, $\chi = 2 - y$, $y = 1$ & $y = 2$

$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx = \int_{0}^{1} \int_{0}^{x} xy dx dy + \int_{0}^{2} \int_{0}^{2-y} xy dx dy$$

$$= \int_{0}^{1} \left(\frac{x^{2}}{2}\right)^{y} y dy + \int_{0}^{2} \left(\frac{x^{2}}{2}\right)^{2-y} y dy$$

$$= \int_{0}^{1} \frac{d}{2} y dy + \int_{1}^{2} \frac{(2-y)^{2}}{2} y dy$$

$$= \frac{1}{2} \int_{0}^{1} y^{2} dy + \frac{1}{2} \int_{1}^{2} (4+y^{2}-4y) y dy$$

$$= \frac{1}{2} \left(\frac{y^{3}}{3} \right)_{0}^{1} + \frac{1}{2} \int_{1}^{2} (4y+y^{3}-4y^{2}) dy$$

$$= \frac{1}{2} \left(\frac{1}{3} \right) + \frac{1}{2} \left[\frac{4y^{2}}{2} + \frac{y^{4}}{4} - \frac{4y^{3}}{3} \right]_{1}^{2}$$

$$= \frac{1}{6} + \frac{1}{2} \left[\frac{16}{2} + \frac{16}{4} - \frac{32}{3} - \left(\frac{4}{2} + \frac{1}{4} - \frac{4}{3} \right) \right]$$

$$= \frac{1}{6} + \frac{1}{2} \left[8 + 4 - \frac{32}{3} - 2 - \frac{1}{4} + \frac{4}{3} \right] = \frac{3}{8}$$

A) Evaluate II xy dx dy over the region in the positive quadrant bounded by $\frac{x}{a} + \frac{y}{b} = 1$.

Sol: Given x = 0, y = 0, $\frac{x}{a} + \frac{y}{b} = 1$.

From the graph, we get

$$x=0$$
, $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{x}{a} = 1 - \frac{y}{b} \Rightarrow x = a\left(1 - \frac{y}{b}\right)$

$$\Rightarrow x=0, x=a\left(1-\frac{4}{b}\right)$$

(A) Using double integral, find the area bounded by y=x & y=x2.

<u>501:</u>	PILLEN	g=x	4	g=x2.	
u					_

7=x	x	-2	\ - \	0		2
	7	-2	-1	0	1	2

From the graph, we get

$$y=x$$
, $y=x^2$, $x=0 \land x=1$

$$\int_{x}^{2} \int_{x}^{2} dy dx = \int_{x}^{2} (y)_{x}^{2} dx$$

$$= \int_{0}^{1} (x^{2} - x) dx = \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)_{0}^{1} = \frac{1}{3} - \frac{1}{2} = -\frac{1}{b}$$

Hence the required area is &.

(N) (15) Evaluate II xy(x+y) dxdy over the area between y=x2 & y=x.

301: By using Problem no. (1), we have $y=x^2$, y=x, x=0 & x=1.

$$\int_{0}^{1} \int_{xy}^{x} xy(x+y) dy dx = \int_{0}^{1} \int_{x^{2}}^{x} x(xy+y^{2}) dy dx$$

$$= \int_{0}^{1} x(xy+y^{2}) dy dx$$

$$= \int_{0}^{1} x(xy+y^{2}) dy dx$$

$$= \int_{X} \left(\frac{x^{3}}{2} + \frac{x^{3}}{3} - \frac{x^{5}}{2} - \frac{x^{6}}{3} \right) dx$$

$$= \int_{\alpha}^{6} \left(\frac{5x^3}{6} - \frac{x^5}{2} - \frac{x^6}{3} \right) dx$$

$$=\int \left(\frac{5x^4}{6}-\frac{x^6}{2}-\frac{x^7}{3}\right)dx$$

$$= \left(\frac{5x^{5}}{30} - \frac{x^{7}}{14} - \frac{x^{8}}{24}\right)^{1} = \frac{5}{30} - \frac{1}{14} - \frac{1}{24}$$

$$=\frac{3}{56}$$